

Cluster-Edge architectural scheme

Project acronym: COLLECTIEF

Project title: Collective Intelligence for Energy Flexibility

Call: H2020-LC-SC3-EE-2020-2

Disclaimer

COLLECTIEF project has received research funding from European Union's H2020 research and innovation programme under Grant Agreement No 101033683. The contents and achievements of this deliverable reflect only the view of the partners in this consortium and the European Commission Agency is not responsible for any use that may be made of the information it contains.

Copyright- The COLLECTiEF Consortium, 2021 - 2025

Project no.	101033683
Project acronym:	COLLECTIEF
Project title:	Collective Intelligence for Energy Flexibility
Call:	H2020-LC-SC3-2018-2019-2020
Start date of project:	01.06.2021
Duration:	48 months
Deliverable title:	Cluster-Edge architectural scheme
Deliverable No.:	D3.1
Document Version>	1
Due date of deliverable:	31.08.2022
Actual date of submission:	31.08.2022
Deliverable Lead Partner:	Partner No. 4, ENERGY@WORK SOCIETA' COOPERATIVA A R.L.
Work Package:	3
No of Pages:	106
Keywords:	Architectural system specification, architectural components, Field communication, Thermal optimization, Flexibility management, Human Building Interface and Visualization, Collective Intelligence, System Design, UML
Name	Organization
Giuseppe Mastandrea	E@W
Marco Antonio Insabato	E@W
Luigi D'Oriano	E@W
Giuseppe Rocco Rana	E@W
Runar Solli	EM

1

Jens Brage	NODA
Daniel Nilsson	VIRTUAL
Panayotis Papadopoulos	Cyl
Muhammad-Salman Shahid	CSTB – G2ELab
Alfredo Astori	LSI - LASTEM
Seyedmohammad Hosseini	NTNU
Amin Moazami	NTNU
Vahid Nik	ULUND
Antonio Luparelli	CETMA

Dissemination level

PU	Public	
	History	

Histor	y
--------	---

Version	Date	Reason	Revised by
0.1	28.06.2022	Deliverable structure draft – First version	Giuseppe Mastandrea E@W
0.2	13.07.2022	Methodology defined	Giuseppe Mastandrea E@W
0.3	20.07.2022	First Version	Giuseppe Mastandrea E@W
0.4	25.07.2022	Internal Review and second version	Giuseppe Mastandrea E@W, Luigi D'Oriano E@W, Giuseppe Rocco Rana E@W
0.5	03.08.2022	Partners Contribution	Runar Solli EM, Jens Brage NODA, Daniel Nilsson VIRTUAL, Panayotis Papadopoulos Cyl, Muhammad-Salman Shahid CSTB-G2ELab, Alfredo Astori LSI- LASTEM, Seyedmohammad Hosseini NTNU, Vahid Nik ULUND
0.6	23.08.2022	Integration of Partners Contribution and third Version -Version Ready for the Peer Review	Giuseppe Mastandrea E@W, Marco Antonio Insabato E@W, Luigi D'Oriano E@W
0.7	29.08.2022	Document review	Antonio Luparelli CETMA, Jens Brage NODA
0.8	30.08.2022	Updated version	Giuseppe Mastandrea E@W

0.9	31.08.2022	Document approval	Amin Moazami NTNU			
1.0	31.08.2022	Final Version	Amin Mastan	Moazami drea E@W	NTNU,	Giuseppe

Executive Summary

This deliverable D3.1 describes the first version of the COLLECTIEF architecture to be submitted at M15. The final version will be released at M24. The aim of this deliverable is the definition of system requirements and technical specifications which are crucial and fundamental steps for the successful design of the COLLECTIEF system. Particularly, the architectural components' dependencies and specifications as an outcome of the progress of the activities conducted in task T3.1 will be presented.

Initially, in Chapter 2 the methodological approach for the definition of the system requirements is presented by indicating the relevance of system requirements with the project use cases. The technical specifications were extracted through internal elicitation using appropriate templates. Their description is important, in order to map the way for successful integration and ensure the consistency of use cases and requirements.

For the sake of completeness, the Conceptual architecture of the COLLECTIEF system is presented at the beginning of Chapter 3 with some refinements. This is a high-level view of the overall architecture, describing the four major layers of the COLLECTIEF platform, namely, the **Field Layer**, the **Distributed Layer**, the **Cluster Layer** and the **Application Layer**.

The platform also comprises the Central Repository for secure storage of the data exchanged between the modules of the platform, with external interfaces through RESTful APIs and MQTTS.

Then, in Chapter 4, the structural view of the system is presented, by providing details on the different architectural components that deliver the system's functionalities. This view provides the system's decomposition into different components, demonstrating the dependencies among them, their interfaces, the data exchanges and their functionalities.

Chapter 5 focuses on the dynamic behaviour of the system, where the use cases are correlated with each architectural component. The way that each component acts within the use cases determines its functional requirements. The updates of components' dependencies are reflected in the structure of the respective UML sequence diagrams. The preliminary UCs description is reported in this document for the sake of completeness by using the appropriate template included in Annex 1.

The deployment view is described in Chapter 6 defining the physical environment, in which the system is intended to run including hardware requirements (e.g., processing nodes, network interconnections, etc.).

Finally, Chapter 7 presents, by using the appropriate template included in Annex 2, the detailed technical specifications of the COLLECTIEF core architectural components focusing on the functionalities, inputs/outputs, interfaces and data types. A detailed description of the concept of the user-friendly human-building interface for COLLECTIEF's Edge Node is presented in Annex 3.

4

Table of Contents

Li	st	of A	Acron	yms	7
1		Intr	oduc	tion	11
	1.	1	Sco	ppe and objectives of the deliverable and relevance in the COLLECTiEF framewor	k11
	1.	2	Stru	ucture of the deliverable	11
2		Me	thodo	ology	13
	2.	1	Sys	stem Architecture Concepts and Design Fundamentals	13
		2.1	.1	Design Principles	14
		2.1	.2	Static and Dynamic Structures	14
		2.1	.3	End-users and Stakeholder requirements' perspective	15
		2.1	.4	Architectural Views	16
		2.1	.5	Architectural Elements Perspectives	16
3		Co	ncep	tual Architecture	19
4		Str	uctur	al – Functional View	22
	4.	1	Ove	erall Structural View of COLLECTiEF architecture	22
	4.	2	Fiel	d Communication Layer	23
		4.2	.1	IoT Devices and Field Systems	24
		42	2	Other Devices and Services	28
		т. ∠	. 2		
	4.	.3	Dis	tributed Layer	28
	4.	2 .3 4.3	Dis [:] .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway))	28 28 28
	4.	4.2 4.3 4.3 opt	Dis 1 .2 .imiza	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne	28 28 etwork 29
	4.	4.2 4.3 4.3 opt	Dis [:] .1 .2 .imiza Clu	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation	28 28 etwork 29 33
	4. 4.	4.2 4.3 4.3 opt 4	Dis .1 .2 .imiza Clu .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management	28 28 etwork 29 33
	4.	4.2 4.3 4.3 opt 4 4.4 4.4	Dis .1 .2 .imiza .1 .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block	28 28 etwork 29 33 33
	4. 4.	4.2 4.3 4.3 opt 4 4.4 4.4 5	Dis .1 .2 .imiza .1 .1 .2 App	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block	28 28 etwork 29 33 33 34 34
	4. 4. 4.	 4.3 4.3 opt 4.4 4.4 5 4.5 	Dis ¹ .1 .2 .imiza .1 .2 .2 App	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block Dlication Layer	28 28 etwork 29 33 33 34 34 34
	4. 4. 4.	 4.2 4.3 4.3 opt 4.4 4.4 5 4.5 4.5 	Dis .1 .2 imiza .1 .1 .2 App .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal neation ster Layer Cluster Node Resource processing and management CI Cluster Block Dication Layer Human Building Local Interface Fully Integrated Dashboard	28 28 etwork 29 33 33 34 34 34
5	4. 4.	4.3 4.3 opt 4.4 4.4 4.4 5 4.5 4.5 Dyr	Dis .1 .2 .imiza .1 .2 .1 .2 .1 .2 .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block blication Layer Human Building Local Interface Fully Integrated Dashboard c View	28 28 etwork 29 33 33 34 34 34 34 34
5	4. 4. 5.	4.3 4.3 opt 4.4 4.4 4.4 5 4.5 4.5 0yr 1	Dis Dis .1 .2 imiza Clu .1 .2 App .1 .2 namic Use	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal neation ster Layer Cluster Node Resource processing and management CI Cluster Block Dilication Layer Human Building Local Interface Fully Integrated Dashboard c View	28 28 etwork 29 33 33 34 34 34 34 34 35 35
5	4. 4. 5.	4.2 4.3 4.3 opt 4.4 4.4 4.4 5 4.5 4.5 0yr 1 5.1	Dis Dis .1 .2 imiza Clu .1 .2 App .1 .2 namio Use .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block Olication Layer Human Building Local Interface Fully Integrated Dashboard c View e cases and sequence diagrams UC01: Demand Side Management: Room temperature control and energy flexibi	28 28 etwork 29 33 33 34 34 34 34 34 35 35 lity 35
5	4. 4. 5.	4.3 4.3 opt 4.4 4.4 4.4 5 4.5 4.5 Dyn 1 5.1 5.1	Dis Dis .1 .2 imiza Clu .1 .2 App .1 .2 namio Use .1	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block Dication Layer Human Building Local Interface Fully Integrated Dashboard c View e cases and sequence diagrams UC01: Demand Side Management: Room temperature control and energy flexibi UC02: Human Building interaction	28 28 etwork 29 33 33 34 34 34 34 34 35 35 lity 35 39
5	4. 4. 5.	4.3 4.3 opt 4.4 4.4 4.4 5 4.5 4.5 4.5 Dyr 1 5.1 5.1 cor	Dis .1 .2 imiza Clu .1 .2 App .1 .2 .1 .2 .1 .2 .1 .2 .3 mmur	tributed Layer BRIG Device (Border Router + Edge Node Resource Management (iGateway)) CI edge Algorithms for demand side management and building thermal ne ation ster Layer Cluster Node Resource processing and management CI Cluster Block Dication Layer Human Building Local Interface Fully Integrated Dashboard c View e cases and sequence diagrams UC01: Demand Side Management: Room temperature control and energy flexibi UC02: Human Building interaction UC03: Network and local thermal optimization based on cluster node and edge nication	28 28 etwork 29 33 33 34 34 34 34 34 34 35 35 lity 35 39 nodes 41

6	Deploym	nent View	
7	Architec	tural Components Detailed Specifications	47
7.	1 Fiel	d Layer devices	47
	7.1.1	APIs for Outdoor measurements service	47
	7.1.2	Smart Thermostats/Valves	51
	7.1.3	Smart Plug	53
	7.1.4	Sphensor	57
	7.1.5	BMS – EMS Server	60
	7.1.6	Portal for access to multiple BMS	62
	7.1.7	APIs for setpoint control in small scale environment	64
7.	2 Dist	ributed Layer	66
	7.2.1	Border Router + Edge Node MGT (iGateway)	66
	7.2.2	CI lightweight edge algorithms for the management of the local flexibility	77
	7.2.3	Edge Node: Building Thermal Optimization	81
7.	3 Clus	ster Layer	85
	7.3.1	Cluster Node Collective Privacy	85
	7.3.2	Cluster Node Fleet Manager	
	7.3.3	Cluster Node: Network Thermal Optimization	
7.	4 Арр	lication Layer	91
	7.4.1	Human-Building Interface (Edge Node)	91
	7.4.2	Fully Integrated Dashboard (Cluster Node)	93
8	Conclus	ion	
Ann	ex 1: Use	e Case Description Template	
Ann	ex 2: Arc	hitectural Specifications Template	
Ann	ex 3: Use	er-friendly human-building interface: the concept for COLLECTiEF Edge Nod	e 102
Refe	erences .		105

List of Acronyms

AHU	Air Handling Unit
API	Application programming interface
BMS	Building Management System
BRIG	Borted Router + iGateway (Edge Node)
CI	Collective Intelligence
CO2	Carbon Dioxide
COLLECTIEF	Collective Intelligence for Energy Flexibility
DDC	Direct Digital Control
DR	Demand Response
DRY	Don't repeat yourself
GDPR	General Data Protection Regulation
HBI	Human Building Interface
HMI	Human Machine Interface
HTTP	Hypertext Transfer Protocol
HVAC	Heating, Ventilation and Air Conditioning
HW	Hardware
	International Energy Agency Energy in
IEA EBC	Buildings and Communities Programme
IEEE	Institute of Electrical and Electronics Engineers
ΙοΤ	Internet of Things
JSON	JavaScript Object Notation
КРІ	Key Performance Indicators
L	Load
LAN	Local Area Network
M2M	Machine to Machine
MQTT(S)	Message Queue Telemetry Transport (Secure)
OCC	Occupant-centric control
PC	Persona Computer
PD	Participatory Design
РМ	Particulate Matter
РРМ	Parts Per Milion
RES	Renewable Energy System
REST	REpresentational State Transfer
RTU	Remote Terminal Unit
SD	Sequence Diagram
SOAP	Simple Object Access Protocol
SRP	Single Responsibility Principle
ТСР	Transmission Control Protocol
UC	Use Case

UTC	Universal Time Coordinated
UV-A	Ultraviolet radiation
VAV	Variable Air Volume
VOC	Volatile Organic Compounds
Wi-FI	Wireless Fidelity
WP	Work Package
XML	extensible markup language

List of Figures

Figure 1 Architectural design approach and workflow	13
Figure 2 Methodological Flow hypothesis for the Requirements' Elicitation	15
Figure 3 Architectural View 4+1 model	16
Figure 4 COLLECTIEE Conceptual Architecture	10
Figure 5 COLLECTIEF overall structural view	
Figure 6 Example of Building Management System (BMS)	24
Figure 7 Example of API contents in ISON format	25
Figure 8 Nonvegian pilot API catalog	20
Figure 0 Example of Sphensor ISON payload	20
Figure 9 Example of Spherisor JSON payload	
Figure 10 BRIG Device Layout and hist prototype	
Figure 12 Decision tree performed after the signal is received	
Figure 12 Decision tree performed alter the signal is received	
Figure 13 Conceptual diagram of the functioning of a system of one Cluster Node and I	
Nodes	
Figure 14 UC01-SD: Demand Side Management: Room temperature control and energy	
Figure 15 LICO2 CD: Llumon Duilding interaction	
Figure 16 UC03-SD: Network and local thermal optimization based on cluster node and ed communication.	lge nodes
Figure 17 UC04-SD: User high-level interaction through the Fully Integrated Dashboard	d (Cluster
Node)	
Figure 18 COLLECTIEF Deployment Diagram	
Figure 19 Conceptual model for understanding the occupant engagement with building i	interfaces
	102
Figure 20 Paradigm shift from occupants and passive participants in buildings to active and	d dynamic
elements in a complex two-way relationship	102
Figure 21 Case Study structure for occupant-centric control strategies	103
Figure 22 A sample of the preliminary Questionnaire developed to conceptualize t	the exact
functionalities of the Human-Building interface and the Fully Integrated Dashboard	104

List of Tables

Table 1 Quality properties and perspectives for architectural elements	17
Table 2 List of identified architectural components, assigned tasks and partners responsibilities	s21
Table 3 List of possible couples sensor_type/channel_index	27
Table 4 Weights of energy and comfort in the calculation of the reward	31
Table 5 Data structure of controls with respective reward	31
Table 6 UC01: Demand Side Management: Room temperature control and energy flexibility	35
Table 7 UC02: Human Building interaction	39
Table 8 UC03: Network and local thermal optimization based on cluster node and edge n	odes
communication	41

Table 9: UC04: User high-level interaction through the Fully Integrated Dashboard (Cluster	Node)
	44
Table 10 APIs for Outdoor measurements service	47
Table 11 Smart Thermostats/Valves	51
Table 12 Smart Plug	53
Table 13 Sphensor	57
Table 14 BMS - EMS Server	60
Table 15 Portal for access to multiple BMS	62
Table 16 APIs for setpoint control in small scale environment	64
Table 17 Border Router + Edge Node MGT (iGateway)	67
Table 18 CI lightweight edge algorithms for the management of the local flexibility (Edge Node	e)77
Table 19 Edge Node: Building Thermal Optimization	81
Table 20 Cluster Node Collective Privacy	85
Table 21 Cluster Node Fleet Manager	86
Table 22 Cluster Node: Network Thermal Optimization	88
Table 23 Human-Building Interface (Edge Node)	91
Table 24 Fully Integrated Dashboard (Cluster Node)	93
Table 25 Use Case description template	97
Table 26 Architectural Components Detailed Specifications Template	99

1 Introduction

The purpose of this deliverable, as the technical output of the project, is to present the first version of the system requirements and technical specifications for the COLLECTIEF system. The deliverable describes the steps and actions performed in the first 4 months of Task 3.1 and can be considered as a key input for the upcoming tasks in WP3 concerning the development and demonstration at a small-scale real environment in G2Elab of the COLLECTIEF hardware and software technologies. Throughout the document, the main requirements and specifications of the COLLECTIEF system are described in the scope of addressing the COLLECTIEF objectives and innovation potential.

1.1 Scope and objectives of the deliverable and relevance in the COLLECTIEF framework

In this deliverable the first version of the COLLECTIEF Conceptual Architecture as well as the integrated system specifications along with the system requirements will be described. This document provides a holistic view of the COLLECTIEF overall Architecture, its building blocks, components, interdependencies among components, and related constraints, such as development methodology and interfaces for data exchanges.

The concept of the architectural framework mainly focuses on deriving the specifications of the system's key components and their functionalities based on the discussions held among the project partners on the User Needs and Business Requirements. Following the basic design principles, the following aspects are addressed:

- Conceptual Architecture Design Process: within this part, an overall view of the COLLECTIEF architecture is presented comprising the components, the interfaces between them and the connections with the external interfaces.
- Functional and Technical Specifications of Architectural Elements/Modules: the objectives of this part are the followings:
 - $\circ\,$ To provide a high-level diagram of dependencies among the different parts of the framework.
 - To describe in detail the constraints of the system elements in terms of hardware and software resources, compatibility with standards, etc...

1.2 Structure of the deliverable

D3.1 "Cluster-Edge architectural scheme" consists of eight chapters, in which the first version of System requirements, dependencies and technical specifications have been described as follows:

- **Chapter 1** presents the general description of the scope and objectives of the deliverable.
- **Chapter 2** describes the methodology, which was followed during the architectural design in order to derive the functional and technical specifications of the COLLECTIEF system. It presents the basic concepts and principles of architectural design adopted to outline the different phases and the definition of the layers and architectural elements that constitute the COLLECTIEF system.
- **Chapter 3** presents the first version of the conceptual architecture of the COLLECTIEF system through a high-level diagram introducing the four main layers comprising the COLLECTIEF system.

- **Chapter 4** describes the structural view of the COLLECTIEF platform describing the different architectural elements/modules that provide the system functionalities. This section also presents the breakdown of the system into different components, demonstrating how each component performs the required functions.
- **Chapter 5** presents an analysis of the dynamic behaviour of the COLLECTIEF system through use cases and sequence diagrams. This dynamic view defines how the system actually works and what responses it gives to external or internal stimuli.
- **Chapter 6** shows the deployment schema of the COLLECTIEF system covering the hardware requirements of the architectural components and tools to be used.
- **Chapter 7** presents the system's detailed architectural elements specifications.
- Chapter 8 provides the conclusions of the overall work.

Finally, the template used to describe the project UCs is included in Annex 1 the template used for the internal elicitation of requirements and technical specifications is included in Annex 2 and as already mentioned the detailed description of the concept of the user-friendly human-building interface for COLLECTIEF's Edge Node is presented in Annex 3.

12

2 Methodology

This section presents the approach and methodology followed to define the architecture. Task 3.1 started on M12 and it will run continuously until M24 so, in this document, we will present the whole methodological process that will be followed to define the final version of the COLLECTIEF system architecture, also considering the intermediate step in M15 for the definition of the first version of architecture that comprises the first consolidation of dependencies, inputs/outputs and specifications of architectural components.

Specifically, in this document this first version is described in detail and will act as a basis for the development activities in WP3. Starting from this first version, between the M15 and M24, the architecture will be updated in parallel with the development activities. Particularly, information concerning the interfaces between the components will be further specified based on the outcomes of technical developments. Also, the description of the whole platform in terms of architecture, modules, dataflow, processes, APIs specifications and interoperability issues will be further detailed.

Figure 1 Architectural design approach and workflow

2.1 System Architecture Concepts and Design Fundamentals

The overall architecture of a system is the composition of different architectural system structures, which include software elements, the attributes and externally visible properties of those elements

along with the relationships and interfaces between them. It describes its different components and how they interact with performing the required functionality.

The representation of the conceptual architecture and its architectural elements allows communication between all interested parties who are interested or concerned in the realization of the system. The definition of the overall system structure and the orchestration between the architectural elements are fundamental parts of the system development process, as architectural design decisions have a profound impact on all the development work that follows and on the execution of the development activities. Finally, all the components that comprise the system must take into account the concerns that arise during the business and user requirements process with the effective involvement and involvement of the key stakeholders.

2.1.1 Design Principles

Following the basic design principles, the architecture is open and modular, so that all potential users can use the functional part of the architecture. Furthermore, the architecture must be as technology-independent and standards-based as possible and promote (when possible) the use of generic and standardized solutions for which several key technologies are available (open source, commercial, etc.).

Based on the static and dynamic models, a number of **key design principles** have been defined and specified to ensure that architecture designers minimize maintenance costs and requirements and promote extensibility, modularity and maintainability. These can be classified as follows:

- **Separation of concerns**, which emphasizes that the overall system/application should be broken down into distinct features with as little overlap of functionality as possible. The ultimate goal of this principle is, on the one hand, to minimize the points of interaction and, on the other, to ensure greater cohesion and low coupling to reduce dependency among components.
- **Single Responsibility Principle (SRP)**, which outlines that each architectural element (e.g., core component of the system) must be responsible only for a specific feature or functionality, or even the aggregation of cohesive functions.
- **Principle of Least Knowledge** (or **Law of Demeter**), which defines that an architectural element (e.g., component or object) should never know or have direct access to the internal details of other architectural elements (e.g., components or objects).
- Don't repeat yourself (DRY), which refers to the principle of avoiding repeating the same functionality or intent in more than one architectural element of the system at the design stage by considering the possibility of replacing it with abstractions or using data normalization to avoid redundancy. Therefore, according to this principle, common functionalities are addressed in more general architectural elements or components, which can be used by each separate element to "access" or "provide" the required functionality.
- **Minimize initial design**, which emphasizes that designing more features and methods than ones required for the system at design time should be avoided. This principle mainly refers to the early stages of the architectural development process, when the project is likely to change over time. Therefore, architectural designers and developers must avoid large-scale design and the potential implementation of components in premature stages.

2.1.2 Static and Dynamic Structures

The key output of the architectural elements design process is the detailed definition of the conceptual architecture and the components that constitute the system, that is, the system structures

and its exposable attributes and properties. The system structures are divided into two complementary categories, static (design-time orchestration) and dynamic (runtime orchestration):

- The **static structures** mainly refer to the phase of the design of the architectural elements of the system (objects, components) and the way in which they fit together internally. The static arrangement of the architectural elements depends on the actual context of use and provides information such as associations, relationships or connectivity between them. For example, relationships define how data elements (input or output) are connected to each other. In hardware, relationships provide the physical interconnections required between the hardware components and the subsystems comprising the overall system.
- The **dynamic structures** of a system show how it works during its use, according to different scenarios and use cases defined, including how each component acts within them. Therefore, the dynamic model and the structures of the system define its runtime architectural elements and their interactions with internal or external feedback. Internal interactions refer to information flows between architectural elements and their parallel or sequential execution of internal tasks, including the potential expression of the effect they can have on information.

2.1.3 End-users and Stakeholder requirements' perspective

The COLLECTIEF project expects to adopt a participatory design (PD) process in Task T4.1 with the aim to involve the relevant stakeholder groups in the process for the requirements definition. This will facilitate the coordination between user and business requirements definition and functional requirements and technical specifications definition. This approach will be based on iterative cycles concerning capturing end-user and business needs as a reference point for the overall design, implementation and evaluation process.

Particularly, since the requirements elicitation is one of the most important parts of the system life cycle processes and must be tackled with extreme care, an iterative approach to elicit and assess the requirements until M24 will be followed. This iterative approach will be applied as depicted in Figure 2:

Figure 2 Methodological Flow hypothesis for the Requirements' Elicitation

Within the COLLECTIEF project, this process will start from the definition of the first set of requirements through the study of the literature, the internal interrogation of the pilots by the internal technology providers continuing with the definition of the methodologies for identifying the stakeholders and eliciting the requirements in order to update the first set. Project presentation and survey/questionnaire for the external stakeholders will be used to define the requirements continuously during the project involving more and more stakeholders up to M24.

2.1.4 Architectural Views

In the context of COLLECTIEF, the 4+1 architectural view model [1] has been used to present concurrent views.

The concept is illustrated in Figure 3:

Figure 3 Architectural View 4+1 model

The 4 + 1 view model describes the software architecture using five concurrent views, each of which addresses a specific set of problems: the logical view describes the object model of the project, the process view describes the concurrency and synchronization aspects of the project; the physical view describes the mapping of the software to the hardware and shows the distributed aspects of the system, while the development view describes the static organization of the software in the development environment.

2.1.5 Architectural Elements Perspectives

Conventional views and approaches provide meaningful information in the process of deriving architecture and in defining various architectural structures. However, to expand the modularity, reliability, and credibility of the system at the design stage, it is helpful to outline and consider specific quality properties during the final stages of the architecture definition process. To define the architectural elements of COLLECTIEF, their dependencies and the respective architectural paths, the architectural perspectives are also taken into consideration, which are analogous to a point of view, as they have been described in detail for the structural/functional views, development dynamic

and implementation. In this report, several quality properties are considered for all architectural elements of the system, as indicated in Table 1:

Perspective	Desired Quality	
General Purpose		
Performance and Scalability	The ability of the system as a whole, including its architectural elements, to perform predictably the required performance that meets system requirements and is capable of handling increased volumes of information processing.	
Availability and Resilience	The ability of the system as a whole to be fully or partially operational as and when required and to effectively manage failures at all levels (hardware, software) that could potentially affect system availability and credibility.	
Security	The ability of the system to reliably and effectively control, monitor and further verify whether defined policies are met (e.g., what actions on which assets/resources) and to be able to recover from failures due to security-related attacks.	
Evolution	The ability of the system and its architectural elements to be flexible enough in case of unexpected changes during the implementation, deployment and/or installation process.	
Additional Perspectives to cope with COLLECTIEF non-fun	nctional requirements	
Maintenance	The system's ability to comply with coding guidelines and standards. It also includes features that must be provided to support the maintenance and administration of the system during its operational phase.	
Privacy & Regulation	The ability of the system and its architectural elements to be compliant with the national and international laws, the GDPR policies and the other rules and standards.	

Table 1 Quality properties and perspectives for architectural elements

Usability	The ease with which the key stakeholders of a system are
	able to work effectively and interact with it in an intuitive
	and user-friendly way.

For each of the above perspectives, the importance of the four viewpoints of the COLLECTIEF framework can vary and the benefits of addressing them are essential to provide a common sense of concern that will guide the process of defining architectural elements and their subsequent development and deployment, integration and validation activities. To ensure that the COLLECTIEF architectural system based on the defined architecture will meet the functional and non-functional requirements, the perspectives proposed will be considered. These perspectives could be modified or enriched by the partners during the development phase based on the characteristics of the components.

18

3 Conceptual Architecture

This chapter provides the COLLECTIEF conceptual architecture overview by introducing the main COLLECTIEF platform layers and sublayers along with its architectural components. COLLECTIEF's vision is to develop, validate and deliver distributed collective intelligence that implements collaborative problem solving and decision making to enable optimal energy management by leveraging the potential for flexibility in a scalable manner within buildings, neighbourhoods and urban systems. During the project, new functionalities and services will be researched and examined using the principles of the Internet of Things (IoT), the concepts of Demand Response programs and the Collective Intelligence paradigm. Figure 4 presents the COLLECTIEF conceptual architecture:

Figure 4 COLLECTIEF Conceptual Architecture

This project has received funding from the European Union's H2020 research and innovation programme under Grant Agreement No 101033683

The main layers and sub-layers of the COLLECTIEF platform are described in brief below:

- The first layer of the architecture is the Field Layer, which is composed of (i) existing HW devices already in place and (ii) new IoT devices and systems needed to embrace legacy barriers by interconnecting existing HW devices and systems. The use of IoT devices provides access to real-time data from pilot sites by providing environmental data, the status of systems and electrical loads, and electrical measurements. This level is interfaced with the Border Router to forward the necessary information in real-time to the higher levels of the platform, in order to allow the functional components of the architecture to perform their own analyzes and calculations. The exchange of information is based on open communication specifications (based on MQTTS [2] and RESTful API) that realize Machine2Machine (M2M) communication through which data, information and actions are sent to the appropriate field device or level top of the platform.
- The Distributed Layer is the fundamental part of the conceptual framework. Physically, it relies on one or more Edge nodes implemented on a low-cost Raspberry PI 4 processing board. It includes all the components and mechanisms needed to support distributed Collective Intelligence. In particular, the Edge Node has the task of ensuring interoperability with field devices and systems and is responsible for the execution of the processing blocks of the edge CI, which include the main processes necessary to execute lightweight algorithms for flexibility management and thermal optimization services.

This layer also puts the user in the loop through locally processed data to provide data insights, active notifications and recommendations (e.g., to apply a specific thermal strategy) to the end user through the human-building local interface that runs on the edge node.

Particularly, this layer includes three hierarchical connected sub-layers that will be deployed on RaspBerry open board and will be named **BRIG**, notably, they are the following:

- **Border Router:** which collects the data from the field and passes them to the edge node.
- Edge Node Resource Management: which manages the field data for the implementation of the algorithms deployed at the edge level.
- **Collective Intelligence (CI) Edge Block:** which applies the setpoint controls to the building temperature depending on energy demand and comfort.
- The Cluster Layer includes the COLLECTIEF Cluster Node, in which we find components for aggregated CIs and thermal optimization. This layer will be in charge of the network optimization by implementing the algorithms for the management of the aggregated flexibility for DR-based services that aim to achieve different objectives (increase energy saving, self-consumption; maximize market participation, etc.) and by applying mechanisms for thermal network optimization including dynamic supply temperature to maximize the thermal comfort of the user. In the Cluster Node, we can also find a data and trend analysis module composed of components useful for performing visual and data-driven analysis to be shown through the high-level COLLECTIEF fully integrated dashboard. In addition, Persistent Data Storage and Management provides all the necessary tools for context and data history management while the control and communication between these components will be enhanced by Collective Privacy and Collective Fleet Management.
- The upper layer, the Application layer contains accessible and easy-to-use HMIs (e.g., accessible by mobile phone through lightweight visualizations). Particularly, one for endusers and one for operators that enables vertical collaboration within the COLLECTIEF

architectural framework. The main purpose of this layer is the visualization of the output data and give to the end user the possibility to interact with the field. Bidirectional data flow is performed between the platform and the front-end layer, since several decisions of stakeholders are based on the provided results from the components of the platform.

As mentioned above, during the bottom-up process of the architecture definition, all the technology provider partners were identified. The main purpose of this phase was the identification of the architectural components that should be developed and the corresponding partner/s. During the first round of information collection, a basic template was created and circulated with requested information concerning main functionalities, dependencies, inputs needed and outputs provided. The list of architectural components along with the assigned tasks and associated partners responsibilities is presented in Table 2.

Component	Related Task	Responsible	Contributing partners
		partner	
Border Router	T3.2	LASTEM	E@W
Edge Node Resource Management	T3.2	E@W	LASTEM, CETMA
CI edge algorithms for demand side	T2.2, T2.4,	ULUND	Cyl, NTNU; E@W
management	Т3.2		
Building Thermal Optimization	T2.2, T2.4,	NODA	Cyl, E@W
	Т3.2		
Collective Privacy	Т3.3	NODA	E@W
Collective Device (Fleet) Management	Т3.3	NODA	E@W
Collective Intelligence based Network	T2.1, T2.4,	ULUND	NODA, NTNU, VIRTUAL
Optimization	Т3.3		
CI for aggregated flexibility	T2.1, T2.4,	ULUND	NODA, NTNU
management	Т3.3		
Network Thermal Optimization	T2.1, T2.4,	NODA	ULUND, NTNU
	Т3.3		
Cluster Node Data and Trends	T2.1, T2.4,	NODA	VIRTUAL, CETMA
Analytics	T3.3, T3.4		
Human Building Local Interface	T3.4	VIRTUAL	Cyl, CSTB
Fully Integrated Dashboard	T3.4	VIRTUAL	Cyl, CETMA, NTNU

Table 2 List of identified architectural components, assigned tasks and partners responsibilities

For all the components, an updated detailed description template is provided in Chapter 7 including the currently known technical specifications. The following chapter provides the first version of the structural view of the COLLECTIEF architecture and presents the main functionalities and dependencies for each architectural component.

4 Structural – Functional View

4.1 Overall Structural View of COLLECTIEF architecture

The structural view presents the different architectural elements that provide system functionality to end users. As part of this vision, the individual components of the system, their dependencies and high-level interfaces concerning the other components have been identified and defined. The functional system model includes the following elements:

- **Functional components** are clearly defined parts of the system that have specific responsibilities, perform distinct functions, and have well-defined interfaces that allow them to be linked with other components.
- **Dependencies** are channels that indicate how the functions of a component can be made available to other components. An interface is defined by the inputs, outputs and semantics of the provided operation/interaction.
- External (third party) entities are connectors (described as dependencies) that represent other systems, software programs, hardware devices, or any other entity that communicates with the system.

The following sub-sections introduce the defined architectural components with their main functionalities and the dependencies on the other components. Moreover, the necessary information for the initial definition of the detailed modules interfaces and APIs are provided acting as a basis for the definition of the final version of the architecture that will be consolidated until the end of the activities related to the Task T3.1.

Figure 5 depicts the COLLECTIEF architecture overall structural diagram with all the identified highlevel dependencies that represent the main flows of information.

22

4.2 Field Communication Layer

This layer is the bottom layer of the COLLECTIEF system and refers to the communication interfaces with the field devices. In particular, communication with the field will happen through specific agents that will manage the communication with every single category of device.

These agents will run inside the Border Router that constitutes the basic interface with the physical world and performs primary information processing based on the received raw data from field devices.

The Border Router will manage the reception of data and the interaction with the field to implement controls and will communicate data to the Edge Node Resource manager through MQTT messages and JSON payloads.

4.2.1 IoT Devices and Field Systems

4.2.1.1 BMS

A building management system (BMS) is a control system that can be used to monitor and manage the mechanical, electrical and electromechanical services in a facility. Such services may include electricity, heating, ventilation, air conditioning, physical access control, pumping stations, elevators, and lights. A straightforward BMS consists of software, a server with a database and smart sensors connected to an Internet-compatible network. The smart sensors around the building collect the data and send it to the BMS, which is stored in a database. If a sensor reports data that is outside of predefined conditions, the BMS will trigger an alarm. In a data center, for example, the BMS might trigger an alarm when the temperature in a rack of servers exceeds acceptable limits.

Depending on the system, the BMS software can be installed as a standalone application or can be integrated with other monitoring programs. The most advanced BMSs can monitor and manage a wide range of building services across multiple platforms and protocols, providing facility administrators with a single shared view of facility operations.

Figure 6 Example of Building Management System (BMS)

This project has received funding from the European Union's H2020 research and innovation programme under Grant Agreement No 101033683

Particularly, in COLLECTIEF the BMS is available in the Norwegian pilot for which a set of APIs to access all the analog data produced is available. In Figure 7 is shown an example of the data read through the API, in JSON format while in Figure 8 is reported the API catalog of the Norwegian BMS:

ſ

```
{
 "ID": 1,
 "ZoneLetter": "T",
  "Description1": "Uteføler",
  "Description2": "320.01.RT00",
  "MaxNumberOfZones": 1500,
  "MaxValue": 30,
  "MinValue": -20,
  "MaxAllowed": 9999,
  "MinAllowed": -10000,
  "DaySetPoint": 21,
  "DeltaTemperature": 0,
  "LowSetPoint": 17,
  "ClosedSetPoint": 11,
  "PMin": 20,
  "Type": 2,
  "Acceleration": 0,
  "AccelerationStr": "",
  "Unit": "°C",
  "InndorRef": 0,
  "OverrideStatus": "",
  "BackColorString": "FFFFFF",
  "ForeColorString": "000000",
  "ActualValue": 11.2,
 "SetValue": 0,
 "Gain": 0,
  "OutdoorTemperature": 11.2062448500801,
  "RefZoneLetter": "",
  "RefZoneID": 0,
  "HasEffectCalculation": 0,
  "HasEffectRegulation": false,
  "IsEffectRegulationOn": false
}1
```

Figure 7 Example of API contents in JSON format

\varTheta swagger	https://v2.emportal.no:443/swagger/docs/v1	api_key	Explore
EM SYSTEMER			
ImportWebhook		Show/Hide List Operations	Expand Operations
POST /api/import/energy			
POST /api/import/heartbeat			
POST /api/import/sendconfig/	/{buildingid}		
POST /api/ImportWebhook			
Service		Show/Hide List Operations	Expand Operations
GET /api/2/Service/{url}			
POST /api/2/Service/{url}			
Token		Show/Hide List Operations	Expand Operations
сет /api/2/Service/token/{u	sername}		
$\left[\text{ BASE URL: , API VERSION: V1 } \right]$			INVALID {}

Figure 8 Norwegian pilot API catalog

4.2.1.2 Power Meter

In the other pilots, low voltage power meters will be installed to monitor in near real-time the energy consumption of the buildings. The power meter is a device able to monitor the energy and power consumption and quantities such as the phase current, the linked voltage and active, reactive and apparent power of the monitored environments.

The meter can be used for a single phase or three phases 3- and 4-wire network and, usually, it is interfaced with wired protocols for the collection of the data (e.g., RS485 Modbus RTU/TCP [3] or RS485 BACNET [4] communication protocol).

4.2.1.3 Smart Plug

Smart Plugs will be installed for monitoring and controlling individual loads. In particular, Shelly Plug was chosen for installations in pilot projects. Shelly Plug is able to send data to the COLLECTIEF BRIG device using a Wi-Fi connection and is also able to act as an Access Point. Shelly Plug has integrated a precise power meter to monitor the overall consumption of the electrical devices connected to it and it is possible to turn it on/off via the /settings endpoint. In particular, it is possible to control the Shelly Plugs using the following resources: (1) /settings/relay/0 to configure the behaviour of the plug in case of application of specific device control policies (e.g., switching on or off depending on consumption thresholds or time slots) and (2) /relay/0 to control and monitor the plug.

4.2.1.4 Smart Valve

Smart thermostatic valves will be installed to monitor and control the temperature of the radiators. In particular, Shelly TRV was chosen for installations in pilot projects. Shelly TRV is able to send data to the COLLECTIEF BRIG device using a Wi-Fi connection. Shelly TRV has a precise integrated temperature sensor to monitor the radiator temperature, giving the possibility to control the temperature by setting the ambient temperature in the range from 5 ° C to 30 ° C. It is possible to

close and open the valve via the /settings/actions topic by setting the following two types of actions: (1) valve_close to invoke when valve is closed and (2) valve_open to invoke when valve is opened. The MQTT messaging protocol is used for communication between the Shelly TRV smart valve and the BRIG device. When configured for MQTT, Shelly TRV sends values from its internal sensors on a specific MQTT topic by publishing a JSON payload with the contents of the HTTP / status endpoint. Shelly TRV supports a series of commands posted on a specific topic for setting actuators, for example to set the target temperature in a range from 5 ° C to 30 ° C.

4.2.1.5 Sphensors

Sphensor[™] is a sensor fusion units developed by LSI LASTEM that allows to simultaneously measure thermo-hygrometric parameters such as temperature and relative humidity of the air, environmental parameters such as atmospheric pressure, illuminance for five different orientations, UV-A radiation and quality of the air in terms of the concentration of VOCs, CO₂ and PM1, 2.5, 4, 10. The Sphensor[™] data logger sensors, using the Thread protocol, are able to send the information acquired to the Sphensor Gateway through a robust mesh radio network. The Sphensor[™] Gateway, in addition to acting as a buffer memory, has been integrated with the BRIG module.

Three units with different monitoring capabilities will be used in the COLLECTIEF project. They are identified with the codes:

- **PRMPB0401**: measuring air temperature, relative humidity and atmospheric pressure;
- **PRMPB0402**: measuring air temperature, relative humidity, atmospheric pressure and illuminance in five orientations;
- **PRMPA0423**: measuring the concentration of CO₂, VOC, PM1, 2.5, 4, 10.

Sphensor[™] data are published using MQTT protocol in JSON format for the upper layer. The structure of the topic on which the data will be published is reported below:

sphensor/<border router serial>/<sensor serial>/grouped_inst

An example of the JSON payload is reported below:

```
[
{
"timestamp": "2020-01-03 06:03:27",
"sensor_type": "opt3001_4",
"value": 2.2177724838256836,
"result": "ok",
"channel_index": 0
},
......
]
```

Figure 9 Example of Sphensor JSON payload

In Table 3 there is a list of the possible couples *sensor_type/channel_index*.

Table 3 List of possible couples sensor_type/channel_index

sensor_type	channel_index	name
sht3x	0	Air temperature
sht3x	1	Relative humidity

27

ms5607	0	Cell temperature
ms5607	1	Atm. pressure
opt3001_0	0	Lux 1
opt3001_1	0	Lux 2
opt3001_2	0	Lux 3
opt3001_3	0	Lux 4
opt3001_4	0	Lux 5
adc_uva	1	UVA

4.2.2 Other Devices and Services

Interfacing with weather services is envisaged in order to retrieve data relating to historical weather conditions and forecast of weather conditions through specific APIs.

Furthermore, it is foreseen the exploitation of all those legacy systems already installed from which it could be possible to gather useful data for the higher levels of the architecture.

4.3 Distributed Layer

4.3.1 BRIG Device (Border Router + Edge Node Resource Management (iGateway))

This component constitutes the real bottom layer of the COLLECTIEF architecture system and refers to the communication interfaces with the field devices and the Edge-to-Cluster communication. Particularly, the border router inside the BRIG device is the basic interface with the physical world and together with the Edge Node Resource Management (iGateway) performs primary information processing based on the received raw data from the field devices. In addition, the BRIG device provides context interpretation of physical signals according to the identified standards for the representation of the data.

Particularly, the Edge Node Resource Management enables and ensures the Edge-to-Cluster and Edge-to-Field communication in an interoperable and intelligent way facilitating seamless, end-toend communication via the development of an open, versatile and secure Intelligent Gateway.

Hence, The BRIG device (Border Router+iGateway) will be deployed on a single HW board, by implementing full communication with the field (legacy system, RES, distributed sensor network, BMS, ...) and guaranteeing secure data exchanging for data storage and implementation of the local control strategies and local dashboard in order to manage problems with the network and manage locally some aspects (flexibility management, optimization services).

Figure 10 BRIG Device Layout and first prototype

4.3.2 Cl edge Algorithms for demand side management and building thermal network optimization

Edge-level algorithms act on the basis of a signal generated at each time step from the grid/ generation-side generated by a specific function called signal generator.

This function is independent from the edge conditions and has access to the aggregated current and predicted energy use of all edge nodes within the cluster.

Signal generator requires the following steps in order to calculate the signal:

- The actual energy load (L), which is the current requirements;
- The typical energy load (MinL), which is an aggregated estimate at typical condition (anomalies are pruned);
- Typical energy load at extreme conditions (MaxL), usually with a 3 hour forecast in advance, meaning that it is a raw estimate of the maximum demand possible under anomalous conditions.

The signal output is an integer between zero and 5. Particularly, the signal is a normalized energy load value with respect to the load under extreme conditions (maximum value for the normalization) and the load under typical conditions (minimum value for the normalization) thus the signal is calculated as follows:

$$signal = (L - MinL)/(MaxL - MinL)$$
 for $MinL < L < MaxL$

A specific function is in charge of gathering and storing the available controls on the demand side management, as well as the respective features depending on the type of user. Particularly, a set template is utilized but, the policies of control can be imported also by the user. Particularly:

- Use types depend on the building template
- The use types determine an initial set of controls and their respective values within a given edge
- The thresholds and the respective steps can be manual inputs
- Other things, like change rate over time as well as any other pattern and difference can be a further input (signal engagement determines a threshold for the signal to be actually controlled)

After all these controls are set the output is a dictionary/JSON for the values, with the given in Figure 11:

controls = {		
"setp_temp":{		
"values":np.arange(22,		


```
"# Setpoint temperature"[
      "C"
   ]"features":{
      "step":1,
      "changeRate":2,
      "engagementSignal":1
"vent_rate":{
   "values":np.arange(1,
   "# Ventilation rate per area"[
   ]"features":{
      "step":3,
      "changeRate":3,
      "engagementSignal":3
"plug_load":{
   "values":[
     0,
   "# Plug loads"[
      "on/off"
   ]"features":{
      "step":-1,
      "changeRate":.5,
      "engagementSignal":4
}
```

Figure 11 Control patterns dictionary example

A specific function, named "control sets generator" will generate a possible set of controls to be chosen considering the current control setpoint, reading the current signal and setpoint values, and generating new ones based on the rate of change and the steps. After that, this function generates all the possible control combinations and passes a part of them as possible control setpoints to improve the comfort or signal behaviour.

The reward is calculated at the current step and is based on the setting of the previous one, using an arbitrary equation whose result is obtained from the energy parameter as well as the comfort indicator.

For each case, energy and comfort have different weight on the reward calculation, following Table 4 for each case

COEFFICIENT VALUE	C+	C-
E+	1	0.5
E-	0	0

Table 4 Weights of energy and comfort in the calculation of the reward

With E+ or C+ being a Boolean that is true if the level of comfort is higher at the current time than in the successor step, and minus being the case of a negative difference of energy.

w/ $\Delta E = E(t) - E(t+1)$

Lack of energy is always bad while lack of comfort is more tolerated in the coefficient.

The final calculation of the reward mechanism, applied at time t+1, is **Reward(t) = RD(t)*COEFFICIENT.**

Finally, the history repository generator generates a data structure to record the controls and their reward dividing to hour, signal, and month in a structure similar to Table 5:

Table 5 Data	structure of	f controls	with	respective reward
--------------	--------------	------------	------	-------------------

Month structure	signal	Hour (24 columns)
12 unique values, one per	0 to 5	Value for each hour
moun		

All information described up to now is used to perform a series of operations at each timestep of the timeseries data as reported below:

1. Setup Section

- 1.1 Read the control features repository, containing the data in JSON format
- 1.2 Read the control features from the templates
- 1.3 Read randomness: define a random probability to choose in order to make the behaviour mixed and not fall into bad equilibriums
- 1.4 Read *temperatureDiscomfortThreshold* (abbreviated as *tempDiscomfortThresh* from now on)
- 1.5 Get the data structure for the history repository generator

2. Loop section (at each iteration)

- 2.1 At first it gets the reward output from the reward generator, based on the chosen control at the previous time step: the way the reward is generated will now be delineated at its own section
- 2.2 The reward is passed as output, together with the previous control value, whose calculation function will be explained in its own section

- 2.3 The control setpoint is obtained from the previous iteration of the script, which means that at each iteration the control setpoint value must be saved for the next iteration just like it happened for the reward mechanism
- 2.4 Next I save both reward and control in a history repository, together with hour, measured signal and date of acquisition.
- 2.5 After that the room temperature is read and the signal_generator function is called, which will be explained in its own step, getting an integer variable called signal between 0 and 5, which is then used to determine the direction of the tree

Figure 12 Decision tree performed after the signal is received

4.4 Cluster Layer

4.4.1 Cluster Node Resource processing and management

This is the block that takes care of receiving and managing the data coming from the different edge nodes and sending to them the data useful for the algorithms that run locally (e.g., price signal) as conceptually represented in Figure 13 in which the control and communication will be empowered by Collective Privacy and Collective Fleet Management.

Figure 13 Conceptual diagram of the functioning of a system of one Cluster Node and two Edge Nodes

There are at least one data base per component, i.e., one for the cluster node and one for each edge node. The cluster node is only involved with data for aggregated demand, and communicate with the edge nodes through broadcasting of a synthetic price signal and possibly additional messages, thus upholding privacy. The edge nodes translates the broadcasted signals into local control actions, e.g., by optimising energy demand with respect to a synthetic price signal while upholding comfort in the form of a number of inequalities on the expected consequences of the control actions. The edge nodes then coordinate their actions by means of edge node to edge node communication in accordance with the principles of Collective Intelligence.

The cluster node and edge nodes may use an off the shelf solution such as the NODA self-host [5] to manage orchestrate internal components, or some other version of the same kind of technology. Communication with other parts of the system will be achieved through a combination of MQTT and REST, with the goal of keeping the number of technologies low in order to facilitate speed of development and ease of maintenance.

33

Contrary to the final product, to facilitate development and evaluation, the cluster node and edge nodes will utilise a REST API to download weather data and weather forecasts from the central database, thus guaranteeing that the same data will be available for evaluation purposes. In addition, the central database will also curate and provide data on energy prices as well as the aggregated demand for the areas being controlled.

4.4.2 CI Cluster Block

The components of the Cluster Block will run the high-level algorithms for computing the signals and other messages to be communicated to the Edge Block. The individual algorithms will be implemented by the group responsible for their respective design, thus guaranteeing accuracy and speed of development.

4.5 Application Layer

The upper layer of the COLLECTIEF system represents the integrated display structure that allows for better user interaction. This level receives data from the lowest layers, which is further analyzed and interpreted. The main objective of this analysis is to allow all interested parties to share a complete view of the functionality of the platform provided, gaining a more active role during the operation of the platform. As a result, bi-directional data flow is done between the platform and the front-end components, as different stakeholders make decisions based on the platform results provided. These decisions must be returned to the platform as input values that lead to an iterative process with the main purpose of concluding the optimal solution for the COLLECTIEF system.

The Application Layer includes two main Graphic User Interfaces:

- Human Building Local Interface
- Fully Integrated Dashboard

4.5.1 Human Building Local Interface

Human Building Local Interface is used as the interface between the edge node and the end user. In the context of COLLECTIEF architecture the local interface is expected to display near real-time operational information tailored to user ability to coordinate and control the interaction with the local devices. From the point of users, they can supervise the current state of their devices and enter information according to their energy plans making sure that the decisions taken by the end users directly affect the operation of the node and the network. The main functionalities of this HMI are:

- Real-time local environmental, energy and thermal measurement monitoring.
- Detailed user-friendly analysis based on real-time energy consumption/production and flexibility values.
- Visualization of the device states and of the settings implemented by the algorithms of the COLLECTIEF edge node.
- Configuration of the desired strategies.

4.5.2 Fully Integrated Dashboard

This component will deliver all the necessary information that represents fully the operation of the Cluster Layer of the COLLECTIEF platform via a series of statistical diagrams, real-time flow diagrams, and comparative visualization with historical data etc. to provide a visualization of different aspects related to COLLECTIEF. Stakeholders can use the information delivered by dashboards to plan their actions regarding the DR strategies planning and the services that can be offered by evaluating the results achieved by the strategies followed in recent times.

5 Dynamic View

The dynamic view analysis of the system provides detailed information and defines how the system actually works within the runtime environment and how it performs in response to the external (or internal) signal. The interactions between system actors and system components are usually data streams representing information exchanged in the parallel or sequential execution of internal tasks.

The UCs is presented by using a template defined in annex 1, a table based in specific standard [6] in which all necessary information for a specific process is described: from high-level information, such as the name of the UC, to a detailed step-by-step analysis of the realization of the UC as well as the actors involved.

The logic of these complex operations is presented through Sequence Diagrams [7], [8], [9] defining the functionalities of each of the key architectural components and the execution flows within each use case. In this chapter, the first version of the project use cases is presented by introducing also the sequence diagrams.

5.1 Use cases and sequence diagrams

In this first phase of T3.1 activities, four main UCs have been defined through an internal consultation of the partners responsible for the pilots with the internal technology providers. In this section, detailed descriptions and sequence diagrams are reported for each of them.

5.1.1 UC01: Demand Side Management: Room temperature control and energy flexibility

	UC Description		
UC Name	UC01: Demand Side Management: Room temperature		
	control and energy flexibility		
Version	V0.1		
Authors	E@W, T3.1 partners		
Last Update	1 st in 02/08/2022		
Brief Description	The goal is controlling the room temperature and loads depending on energy demand and comfort as well as		
	network constraints		
Assumptions and Pre-Conditions	 A control interface is available for the Resident in the room. The system has sensors and actuators to control the building temperatures. The buildings are connected The central repository data are stored with 		
	Collective Privacy in mind		

Table 6 UC01: Demand Side Management: Room temperature control and energy flexibility

Goal (Successful End Condition)	Find an optimal configuration for the control set point value			
Post-Conditions	System functioning according to the set point set iteratively			
Involved Actors	Inhabitants, owners of the building			
UC Initiation	The residents need to improve housing comfort while saving energy.			
Main Flow	 Collect all the available controls on the demand side management and their features from a template based on the use type; characteristics like value thresholds and step are always a user input, while the change-rate and the engagement signal are optional 			
	2. The control features are loaded from the templates			
	 Read the randomness parameter in order to not stick to suboptimal equilibrium 			
	4. Read the temperature discomfort threshold			
	5. Generate the data structure relative to the history repository			
	6. Get the reward output from the reward function, whose coefficient is based on the difference between the previous energy value and the current as well as the difference between the previous comfort score index and the current, while the energy value is the relative difference between the current energy demand and the one at the previous iteration			
	7. Get the control setpoint of the previous iteration			
	8. Save control setpoint and reward in the history repository, containing date of acquisition			
	9. Get the signal value, which is an integer between 0 and 5, based on the normalized energy demand value with the typical demand as the minimum and the forecasted extreme demand as the maximum			

	10. When the signal is between 1 and 4 generate the control set from the control features and the possible control combinations				
	11. Generate a random number between 0 and 100 and compare to the value the randomness parameter				
	12. When the random number is smaller than randomness, one of the control setpoints is randomly chosen				
Alternative Courses	10a. When the signal is exactly 0 then the signal at the				
	previous timestamp is checked				
	11a. In case of signal at the previous timestamp equal to0, then the control points are set back to default values				
	11ab. In case the signal at the previous timestamp is larger than zero then the control point is set to the current values				
	11b. In case the signal is exactly 5 and the room temperature is more than 2 degrees above the temperature discomfort threshold the control setpoint is set back to the default setting				
	10bb. In case the signal is exactly 5 and the room temperature is more than 2 degrees some control sets for the setpoint are generated				
	11bb. From the correlated history repository, the recorded control with the highest reward is selected as the new control setpoint				
	11c. In case the room temperature is above the temperature discomfort threshold then use the defaults for the control setpoints instead of randomly generating new ones				
Relationships with other UCs	UC02, UC03				
Architectural Elements / Services	Cluster node				
Involved	Edge node				
	Controllable heat pumps				
	Controllable loads				
	Border router to sensor fields				
	Central database MI Sequence Diagram				
OWL Sequence Diagran					

38

Figure 14 UC01-SD: Demand Side Management: Room temperature control and energy flexibility

5.1.2 UC02: Human Building interaction

UC Description						
UC Name	UC02: Human Building interaction					
Version	0.1					
Authors	E@W, T3.1 partners					
Last Update	1 st at the 02/08/2022					
Brief Description	The HBI will allow users to interface and interact with the edge nodes that control and monitor the temperature and loads resulting in an effective control of energy parameters for the building, as well as receive and apply suggestions to improve efficiency according to the KPIs. The user may also apply its own controls.					
Assumptions and Pre-Conditions	 A control interface is available for the Resident in the room. The control algorithms are active and in constant function The data can be received and works under a promise of local privacy. 					
Goal (Successful End Condition)	The data is visualized in a valuable and meaningful way to the user so that the user may make proper decisions for saving resources					
Post-Conditions	The system keeps functioning whether or not the parameters have been changed.					
Involved Actors	Building Occupants, Managers, Owners					
UC Initiation	Users access the interface					
Main Flow	 User accesses the interface and views among the possible selections of data User selects the information of interest to view, coming from the relative components and services involved in the operation The local interface requests the necessary data from each component in order to present it to the user, some control suggestions are given The user reads the information and closes it down when he has obtained the needed information 					

Table 7 UC02: Human Building interaction

Alternative Courses	3a. In case the user takes up the suggestions it can apply them directly					
	4a. The system applies the necessary to controls to the components					
	5a. Go back to step 4					
	3b. User applies his own controls that go back to the building control and management algorithms					
	4b. The system receives the controls					
	5b. Go back to step 4					
Relationships with other UCs	UC01					
Architectural Elements / Services	Thermal network optimization					
Involved	Building thermal optimization and flexibility management					
	 CI-based building control and management algorithms 					
	NODA Network Optimization					
	Collective Intelligence based control system					
UN	UML Sequence Diagram					

5.1.3 UC03: Network and local thermal optimization based on cluster node and edge nodes communication

Table 8 UC03: Network and local thermal optimization based on cluster node and edge nodes communication

	UC Description				
UC Name	UC03: Network and local thermal optimization based on				
	cluster node and edge nodes communication				
Version	0.1				
Authors	E@W, T3.1 partners				

Last Update	1 st at the 02/08/2022				
Brief Description	Optimise network-wise heat demand by constructing a price signal (modulo a positive scalar) to the end of advising the edge nodes of when to consume more and when to consume less, while the edge nodes calculate a temperature setpoint according to external and internal constraints, and finally send back a price forecast that the cluster nodes use to calculate the next price signal.				
Assumptions and Pre-Conditions	 Sensors and temperature actuators must be connected to the respective edge node The edge nodes must be connected to the cluster node through communication system (e.g., NODA self-host) The data is obtainable from a common database with Collective Privacy as well as encrypted message exchange 				
Goal (Successful End Condition)	Through the price signal, the building groups and respective heating/cooling systems are able to save up on energy costs while providing comfort				
Post-Conditions	The set points of the edge node actuators have been changed according to constraints				
Involved Actors	Property owners, managers and energy providers (indirectly)				
UC Initiation	Once the Node is set up, the data is continuously retrieved and processed on local data instances as well as a main database.				
Main Flow	 The database stores and makes available the latest weather to both cluster and edge nodes and price signal forecast to the cluster node At a higher frequency, the database also sends additional data to the cluster node for the price signal calculation From there the price signal forecast of the cluster is sent to the edge node The edge node sensors send to the edge node algorithms all the necessary data to calculate the temperature set point and energy demand The temperature set points are sent to the edge node actuators The demand forecast is also calculated by the edge node algorithms and sent to the main database to construct the modulated demand forecast, which is used for the next iteration The user is informed of the actuations carried out 				

Alternative Courses	If specified, the only demand forecast used is the one coming from the local cluster and not the general database				
Relationships with other UCs	UC01, UC02, UC04				
Architectural Elements / Services Involved	 Communication with the cluster node, in order to manage the edge node Cluster node connection to the central database Weather APIs to retrieve the data necessary for cooling and heating Each edge node and their own local database Central Database 				
UN	IL Sequence Diagram				
sd Thermal optimization	er e Edge Nodes Edge nodes: sensors edge nodes: actuators Multi-purpose central repository 1 : Weather forecast, price forecast 2 : Weather forecast 3 : Weather forecast, price forecast, total demand of mod forecast 4 : building outdoor and indoor temperatures 5 : district heating temperature secondary side supply temperature set point, and electricity demand 6 : Heat pump temperature, temp. set point and electricity demand 8 : Demand forecast				
	11 : Temperature set point signals				
Figure 16 UC03-SD: Network and local therma	I optimization based on cluster node and edge nodes communication				

43

5.1.4 UC04: User high-level interaction through the Fully Integrated Dashboard

UC Description				
UC Name	UC04: User high-level interaction through the Fully			
	Integrated Dashboard (Cluster Node)			
Version	0.1			
Authors	E@W, T3.1 partners			
Last Update	1 st at the 02/08/2022			
Brief Description	Cloud-based dashboard to visualize information at the			
	level of building clusters to property owners, managers			
Assumptions and Pre-Conditions	The cluster node is set up and the relative actors have an			
	access to the dashboard, which in turn can access the			
	information from the cluster nodes and the edge nodes			
Goal (Successful End Condition)	Provision of the necessary high-level insights for each actor			
Post-Conditions	Visualization of the energy consumption, heating and			
	performance of the applied algorithms			
Involved Actors	Property owners, managers and energy providers			
UC Initiation	Dashboard is set up for access by the relative actors			
Main Flow	1. The actor accesses the dashboard through a web			
	application 2 The actor desires to view the data, in a general or			
	specific manner according to the necessity			
	3. The dashboard requests the required data from			
	each component			
	4. The received data is presented to the actor as			
	requested			
Alternative Courses	None defined			
Relationships with other UCs	UC03			
Architectural Elements / Services	Cluster Node software components such as:			
Involved	Collective Fleet Management			
	Noda Network Optimization, thermal network			
	optimization and aggregated flexibility			
	Collective Intelligence based control system			
	Data and Trend analytics			
	Integrated Dashboard			
UM	L Sequence Diagram			

Table 9: UC04: User high-level interaction through the Fully Integrated Dashboard (Cluster Node)

6 Deployment View

The Deployment View presents aspects of the system that are connected with the realization of the system's components in the physical world. This view defines the physical entities of the environment, in which the system is intended to perform its running operations, including:

- Technical environment (e.g., processing nodes, network interconnections, etc.);
- Mapping of software elements to the runtime environment;
- Third-party software requirements;
- Network requirements.

The architectural view reported in Figure 18 provides a first overview of the deployment environment of the COLLECTIEF platform, which depends on the pilot sites topology and on the architecture components characteristics. This architectural view covers the currently known hardware requirements of the software modules and the tools to be used represented in Deployment Diagram.

Figure 18 COLLECTIEF Deployment Diagram

This project has received funding from the European Union's H2020 research and innovation programme under Grant Agreement No 101033683

7 Architectural Components Detailed Specifications

7.1 Field Layer devices

7.1.1 APIs for Outdoor measurements service

Table 10 APIs for Outdoor measurements service

<u>Name of New Component/Service:</u>	API for Outdoor measurement services integration (Third Party system)
<u>Туре:</u>	Software
<u>Functionality:</u>	Weather data collection from building-integrated weather stations and Open-API weather data. - Historical weather conditions - Forecasted weather conditions
Input Connections & Interfaces: From which components it receives input	Building-integrated weather stations – MySQL database Open-API weather data – Meteostat, or similar
<u>Output Connections & Interfaces:</u> To which components it sends the results	Edge Node
Relevant Use Cases	UC02, UC03, UC04

Input Parameters					
Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From
Air Temperature (AirTC_Avg)		float	CSV	Celsius, [-40,60], 6 samples per hour (every 10 minutes)	Building-integrated weather stations — MySQL database
Relative humidity (RH)		Integer	CSV	Percent (%), [0,100], 6 samples per	Building-integrated weather stations – MySQL database

				hour (every 10 minutes)	
Rain Intensity		float	csv	, [],6 samples per hour (every 10 minutes)	Building-integrated weather stations – MySQL database
Raining	Percentage of dry sensitive surface of the sensor	Binary	CSV	No units, [on,off] (precipitation in progress / no precipitation)	Building-integrated weather stations – MySQL database
Solar irradiance		float	CSV	W/m2, [0,1600], 6 samples per hour (every 10 minutes)	Building-integrated weather stations – MySQL database
Wind speed (WS_ms_Avg)		float	CSV	Meters/secon d (m/s), [0,60], 6 samples per hour (every 10 minutes)	Building-integrated weather stations – MySQL database
Wind direction (WindDir)		float	CSV	Polar degrees, [0,359], 6 samples per hour (every 10 minutes)	Building-integrated weather stations – MySQL database
Atmospheric pressure (BP_mbar_Avg)		float	CSV	mbar, [],6 samples per hour (every 10 minutes)	Building-integrated weather stations – MySQL database

Time	Time of observation	string	JSON	(YYYY-MM-DD hh:mm:ss), 6 samples per hour (every 10 minutes)	Meteostat (https://dev.meteostat.net/ formats.html#time-format)
temp	air temperature	float	JSON	Celsius, 6 samples per hour (every 10 minutes)	Meteostat
dwpt	dew point	float	JSON	Celsius, 6 samples per hour (every 10 minutes)	Meteostat
rhum	relative humidity	Integer	JSON	Percent (%), [0,100], 6 samples per hour (every 10 minutes)	Meteostat
prcp	one hour precipitation total	Float	JSON	Milimeters, (mm), [],6 samples per hour (every 10 minutes)	Meteostat
snow	snow depth	integer	JSON	Milimeters, (mm), [],6 samples per hour (every 10 minutes)	Meteostat
wdir	wind direction	Integer	JSON	Degrees (o), [],6 samples per hour (every 10 minutes)	Meteostat

wspd	average wind speed	float	JSOI	N	Kilometers/ho ur (km/h), [],6 samples per hour (every 10 minutes)	Meteostat
wpgt	peak wind gust	Float	JSOI	N	Kilometers/ho ur (km/h), [],6 samples per hour (every 10 minutes)	Meteostat
pres	sea-level air pressure	Float	JSON		hPa, [],6 samples per hour (every 10 minutes)	Meteostat
tsun	one hour sunshine total	Integer	JSOI	N	Minutes (m),	Meteostat
сосо	weather condition code	integer	JSOI	N	No units	Meteostat
Attribute/Para -meter	Short Description	Data Type	Data Format		Value Range & Frequency	Data Sent To
All	All	All	Date a	afram	ALL	Edge Node
Software Require	ements/Developr	ment Langua	ge	Python		
Hardware Requirements			CampellMeteo (Pyranometre PippZonen CMP3 SMP3, Precipitation detector DeltaOHM_HD2013.3, WindSonic)			
Communications	;			Open-API, MySql connector		
Status of the dev	elopment of the	component		already developed		

7.1.2 Smart Thermostats/Valves

Table 11 Smart Thermostats/Valves

Name of New Component/Service:				Smart Thermostats/Valves		
<u>Type:</u>				Softw	are	
<u>Functionality:</u>			Interface software with the smart thermostats (Ecobee and Sensibo for the Cypriot pilot syte and Shelly TRV for the others) for collecting measurements and sending commands to the HVAC systems			
			 Read and write room set point temperature, Read and write fan mode, Read and write operation mode (cooling/heating) 			
Input Connections & Interfaces: From which components it receives input			hich	Ecobee smart thermostat - API Sensibo smart thermostat – API Shelly TRV MQTT Communication		
<u>Output Connect</u> components it se	tions & Interfa nds the results	i <u>ces:</u> To wl	hich	CI lightweight edge algorithms for the management of the local flexibility		
<u>Relevant Use Cas</u>	es			UC01, UC02, UC03		
		Inp	ut Pa	arameters		
Attribute/Para- meter	Short Description	Data Type	Data Forr	a nat	Value Range & Frequency	Data Received From
Set point air temperature	Current set point of the room air temperature (tag if it is defined by the user or the	Float64	JSOI	V	Celsius (oC), [18,30], 4 samples per hour (every 15 minutes)	IoT/Smart thermostat

	Edge Node algorithms)				
Fan mode	Current fan mode of the Fan Coil, Split, A/C Unit (tag if it is defined by the user or the Edge Node algorithms)	Float64	JSON	No units, [0,1,2,3] or [1,2,3], 4 samples per hour (every 15 minutes)	IoT/Smart thermostat
Operation model	Current operation mode of the Fan Coil, Split, A/C Unit (tag if it is defined by the user or the Edge Node algorithms)	string	JSON	No units, [heat, cool] or [heat, cool, off], 4 samples per hour (every 15 minutes)	IoT/Smart thermostat
		<u>Out</u>	put Paramet	ters	
Attribute/Para -meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Sent To
Attribute/Para -meter Set point air temperature	Short Description	Data Type Float64	Data Format JSON	Value Range & Frequency Celsius (oC), [18,30], 4 samples per hour (every 15 minutes)	Data Sent To Edge Node

52

			-				
	A/C Unit (tag if				4 samp	les per	
	it is defined by				hour (e	very 15	
	the user or the				minutes	s)	
	Edge Node						
	algorithms)						
							- / /
Operation	Current	string	ISO	N	No	units	Edge Node
model	operation	String	5501	v	No (hoat d	units,	
mouer	operation of the				[neul, l		
	mode of the				[neat,	cooi,	
	Fan Coil, Split,				off], 4 s	amples	
	A/C Unit (tag if				per	hour	
	it is defined by				(every	15	
	the user or the				minutes	5)	
	Edge Node						
	algorithms)						
Software Require	ements/Developi	ment Langua	ge	Pytho	n (Pyeco	bee, Ser	nsibo API), Shelly TRV MQTT
				comm	unicatio	n	
Hardware Requi	rements			Ecobee3 lite			
				Sensibo Air			
			Shelly TRV				
Communications			WIELconnectivity				
						,	
Status of the development of the component			partially developed				

7.1.3 Smart Plug

Table 12 Smart Plug

Name of New Component/Service:	Smart Plug
<u>Туре:</u>	Device
<u>Functionality:</u>	 The plug supports on and off commands to activate and deactivate the device.

	 Set a max_power threshold setting in order to set the plug off in case of overpower support auto_on and auto_off settings these are timers in seconds which will turn ON or OFF the plug when it has been turned OFF or ON respectively. Thus, the user can set a limit for how long the plug can be ON or OFF.
<u>Input Connections & Interfaces:</u> From which components it receives input	 Physical button HTTP request, through the local web interface (API request, sent through wifi) A command sent via the cloud (through Shelly app)
<u>Output Connections & Interfaces:</u> To which components it sends the results	Get data through MQTT subscription for the respective topics, monitor the situation through the respective web interface
<u>Relevant Use Cases</u>	UC01, UC02, UC03

<u>Input Parameters</u>					
Attribute/Pa ra-meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From
max_power	Overpower threshold	number	JSON	Watt	Cloud, web interface settings
led_power_d isable	Disable LED indication for output status	boolean	JSON		Cloud, web interface settings
actions	Set the actions parameters	hash	JSON		
Output Parameters					

54

Attribute/Pa ra-meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Sent To
Relays (/status)	Contains the current state of the relay output channels.	array of hashes	json		HTTP request to whatever agent makes the respective API call
meters (/status)	Current status of the power meter	array of hashes	json		HTTP request to whatever agent makes the respective API call
Temperature (/status)	Internal device temperature in °C	number	json	Celsius	HTTP request to whatever agent makes the respective API call
Overtempera ture (/status)	True when device has overheated	bool	json		HTTP request to whatever agent makes the respective API call
tmp.tC (/status)	Internal device temperature in °C	number	json	Celsius	HTTP request to whatever agent makes the respective API call
tmp.tF (/status)	Internal device temperature in °F	number	json	Farenheit	HTTP request to whatever agent makes the respective API call
tmp.is_valid (/status)	Whether the internal temperature	bool	json		HTTP request to whatever agent makes the respective API call

	sensor functions correctly						
Power (/meter/0)	Current real AC power being drawn	number	json	watts	HTTP request to whatever agent makes the respective API call		
is_valid (/meter/0)	Whether power metering self- checks OK	bool	json		HTTP request to whatever agent makes the respective API call		
Overpower (/meter/0)	Value in Watts, on which an overpower condition is detected	number	json		HTTP request to whatever agent makes the respective API call		
Timestamp (/meter/0)	Timestamp of the last energy counter value, with the applied timezone	Number	json		HTTP request to whatever agent makes the respective API call		
Counters (/meter/0)	Energy counter value for the last 3 round minutes in Watt-minute	Array of numbers	json		HTTP request to whatever agent makes the respective API call		
Total (/meter/0)	Total energy consumed by the attached electrical appliance in Watt-minute	Number	json		HTTP request to whatever agent makes the respective API call		
Software Requirements/Development Language The device API is language agnostic, what matters is							

The device APT is language agnostic, what matters is making the proper HTTP request or MQTT topic subscription

Hardware Requirements	The plug itself, a way to connect to the web interface or the Shelly app or a server that acts as MQTT broker
Communications	MQTT enabled, make sure the topic for each option, both for input and output, is known.
Status of the development of the component	Already developed and usable. Documentation is open for use

7.1.4 Sphensor

Name of New Component/Service:	Sphensor		
<u>Туре:</u>	Device		
<u>Functionality:</u>	The Sphensor is able to measure thermo-hygrometric parameters such as temperature and relative humidity of the air, environmental parameters such as atmospheric pressure, illuminance for five different orientations, UV-A radiation and quality of the air in terms of the concentration of VOCs, CO2 and PM1, 2.5, 4, 10		
Input Connections & Interfaces: From which components it receives input	Building-Environmental conditions		
Output Connections & Interfaces: To which components it sends the results	It communicates with the Border Router through the Thread protocol that allows the connection and communication with the Edge Node.		
Relevant Use Cases	UC01, UC02, UC03		
Input Parameters			

Table 13 Sphensor

Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From	
Temperature		Numerical	JSON	-3060°C	Field	
Relative Humidity		Numerical	JSON	0100%	Field	
Atmospheric Pressure		Numerical	JSON	6001100 hPa	Field	
Lux		Numerical	JSON	0.190 klx	Field	
UV-A		Numerical	JSON	0200 μW/cm2	Field	
VOC and equivalent CO2		Numerical	JSON	01000 ppm	Field	
PM (1, 2.5, 4, 10)		Numerical	JSON	01000 µg/m3	Field	
СО2		Numerical	JSON	05000 ppm	Field	
Internal Temperature		Numerical	JSON	-40±60 °C	Field	
Internal Pressure		Numerical	JSON	7001100 mbar	Field	
Output Parameters						
Attribute/Para -meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Sent To	
Temperature		Numerical	JSON	-3060°C	Border Router (Edge Node)	

Relative Humidity		Numerical	JSO	N	0100%	Border Router (Edge Node)
Atmospheric Pressure		Numerical	JSO	N	6001100 hPa	Border Router (Edge Node)
Lux		Numerical	JSO	N	0.190 klx	Border Router (Edge Node)
UV-A		Numerical	JSO	N	0200 μW/cm2	Border Router (Edge Node)
VOC and equivalent CO2		Numerical	JSON		01000 ppm	Border Router (Edge Node)
PM (1, 2.5, 4, 10)		Numerical	JSON		01000 µg/m3	Border Router (Edge Node)
CO2		Numerical	JSON		05000 ppm	Border Router (Edge Node)
Internal Temperature		Numerical	JSON		-40±60 °C	Border Router (Edge Node)
Internal Pressure		Numerical	JSO	N	7001100 mbar	Border Router (Edge Node)
Software Requirements/Development Language			The API is language agnostic, what matters is making the proper HTTP request or MQTT topic subscription. The communication with the border router happens via threads protocol			
Hardware Requirements			Connection to the Border Router			
Communications			MQTT enabled, make sure the topic for each option, both for input and output, is known.			
Status of the dev	Status of the development of the component			Already developed		

7.1.5 BMS – EMS Server

Table 14 BMS - EMS Server

Name of New Co	mponent/Service	<u>;;</u>		BMS - EMS Server (BMS System from EM Systemer)			
<u>Туре:</u>				Software			
				Reside	es in a Building Aι	itomation Server	
<u>Functionality:</u>			API for data exchange. Reading of temperature and air quality (CO2) levels from rooms and adjusting setpoint for room control or other loads in the building.				
Input Connection components it re	ons & Interface ceives input	<u>s:</u> From wl	hich	The BMS system will receive input from the BRiG via API.			
<u>Output Connections & Interfaces:</u> To which components it sends the results			The result of the API query will be sent back to the BRiG device.				
<u>Relevant Use Cases</u>			UC01, UC02, UC03				
Input Po			ut Pa	<u>irameters</u>			
Attribute/Para- meter	Short Description	Data Type	Date Forr	a nat	Value Range & Frequency	Data Received From	
Setpoint	Indoor room temperature setpoint.	Object	JSON		Depends on the source and configuration of the BMS system. Often in the range from 10 to 30.	BRiG	
Other control setpoints	Other control setpoints. E.g., heat	Object	JSOI	N	Depends on the source and configuration	BRiG	

	pump setpoint.				of the BMS system.			
Output Parameters								
Attribute/Para -meter	Short Description	Data Type	Dat Fori	a mat	Value Range & Frequency	Data Sent To		
Indoor temperature	Indoor room temperature as measured by the local thermostat or temperature sensor (the source varies from building to building).	Object	JSON		JSON		Depends on the source and configuration of the BMS system. Sample frequency varies, based on source and size of the overall project.	Depends on the hardware delivered in the specific BMS system. • Thermostat • Sensor connected to DDC controller All enquiries from BRiG will be returned to BRiG.
CO2 value	The indoor air quality measures in CO2 (ppm)	Object	JSON		0 -2000 PPM Sample frequency varies based on the source and size of the overall project	CO2 sensor, primarily 2-10V output read into a thermostat or DDC controller.		
Software Requir	ements/Developr	ment Langua	ge	EMS Server (BMS Software)				
Hardware Requirements			Building Automation Server Industrial PC					
Communications	;			LAN				
Status of the dev	elopment of the	component		Developed.				

Can be revised or changed based on potential needs in the project.

7.1.6 Portal for access to multiple BMS

Table 15 Portal for access to multiple BMS

Name of New Component/Service:	Portal for access to multiple BMS (EMPortal.no)				
	Portal/Cloud solution for 1400 BMS systems delivered by EM Systemer AS.				
<u>Туре:</u>	Software				
<u>Functionality:</u>	API for data exchange. Reading of temperature and air quality (CO2) levels from rooms and adjusting setpoint for room control or other loads in the building.				
Input Connections & Interfaces: From which components it receives input	The API will receive input from Central database NODERED based interface and deliver data to the Central server.				
<u>Output Connections & Interfaces:</u> To which components it sends the results	The result of the API query will be sent back to the Central server.				
Relevant Use Cases	UC01, UC02, UC03				
Input Parameters					

Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From
GetMany/T	Get all the analog objects defined in the given project/buildi ng	List of objects	JSON	Varies	Varies

GetMany/M	Get all measurement zones defined in the give project/buildi ng.	List of objects	JSON	Varies	Varies
GetGaugeData/ 0	Get measures data from a given measurement zone. One measurement zone could for example be the AMS meter.	Object	JSON	Varies	Varies
GetMany/A	Get all the alarm status of the building. Also used to get status of motion sensors, window contacts and other digital variables	Object	JSON	Varies	Varies
		<u>Out</u>	put Parame	<u>ters</u>	
Attribute/Para -meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Sent To
Reply to given Query					NTNU Server

Software Requirements/Development Language	EMPortal.no
Hardware Requirements	N/A
Communications	Internet access to www.EMPortal.no
Status of the development of the component	Done. Alterations and modification can be done based on COLLECTiEF project needs.

7.1.7 APIs for setpoint control in small scale environment

Name of New Component/Service:	APIs for setpoint control in small scale environment
<u>Туре:</u>	Software
<u>Functionality:</u>	APIs that allow the control from third party and the control inside the G2ELAB pilot site.
	Particularly, in the first case, the API permits the third party to send the new setpoints of comfort towards the intermediate plateform (called as SG-InterOp) by a third party. Essentially, the sent setpoints should be backed by a model predictive control developed by third party. SG-InterOp is an IOT based platform (with thingsboard at the backend) for storing and visualizing data.
	In the second case the API does the following tasks:
	Compare the setpoints of BMS and SG-InterOp and:
	 If values are different and latest values are found on SG-InterOp, it sets these values on BMS, log it, sends notifications to responsibles and stores the new values in influxDB database and csv file. If values are different and latest values are found on BMS, it copes these values

Table 16 APIs for setpoint control in small scale environment

	on SG-InterOp, log it, send notifications to responsibles and store the new values in influxDB database and csv file.
Input Connections & Interfaces: From which components it receives input	 Third party server BMS G2ELab SG-Interop G2ELab
<u>Output Connections & Interfaces:</u> To which components it sends the results	 BMS G2ELab SG-Interop G2ELab Log Pushbullet Csv file InfluxDB database
Relevant Use Cases	UC01, UC02, UC03

Inpu	t Pa	ram	eter

Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From
Setpoints of BMS Latest values of setpoints on SG- InterOp	The setpoints of both entities are compared for either remote modification on BMS or indicate a human interference	Float	List	Units; Thot = °C Tcold = °C CO2 = ppm Range: Temperature= 15°C to 30°C CO2 concentration = 300 to 1500 ppm	BMS G2ELab SG InterOp G2ELab

Output Parameters							
Attribute/Para -meter	Short Description	Data Type	Date Forr	a mat	Value Ra & Frequen	ange ncy	Data Sent To
Setpoints of BMS Setpoints on SG-InterOp	-	Float	HTTPS (SOAP Protocol for BMS) (Simple Post Request for SG InterOp)		Units; Thot = °C Tcold = °C CO2 = ppm Range: Temperatu 15°C to 30 CO2 concentrat = 300 to 1 ppm	n ure= D°C Ition 1500	SG InterOp G2ELab BMS G2ELab
Software Requirements/Development Language			ge	Programming language : Python Requirement : Pandas, Requests, Logging, SOAP Protocol, Pushbullet, InfluxDb			
Hardware Requirements				Linux	Server with	n cronto	ab and InfluxDB
Communications	5			HTTPS (either SOAP or simple requests.post)			
Status of the dev	velopment of the	component		Alread	dy develope	ed	

7.2 Distributed Layer

7.2.1 Border Router + Edge Node MGT (iGateway)

<u>Name of New Component/Service:</u>	BRiG Device (Border Router + Edge Node MGT (iGateway))
<u>Туре:</u>	Firmware
Functionality:	Field sensors measurement data reception and local storage.
	Field actuators setting by Boolean status or continuous (percentage) value.
	Field devices (sensors and actuators) diagnostics reception and local storage.
	Service commands for radio network testing and maintenance.
	BrIG diagnostic status related to communication performance with field devices (signal quality, communication failures), local system performance (memory, CPU load); local storage of these information.
	Registry definition of all devices related to the specific BRiG (to which they are connected), including type (sensor, actuator), product model, communication parameter (protocol type, address, timings, etc.), local unique system identifier, user assigned name and description, etc.
	Local data retrieval capability specifying the time interval and data unique identifier.
Input Connections & Interfaces: From which components it receives input	iGateway (Edge Node) software subsystem inside BRiG through MQTT messages and JSON payloads.
Output Connections & Interfaces: To which components it sends the results	iGateway software subsystem inside BRiG through MQTT messages and JSON payloads.

Table 17 Border Router + Edge Node MGT (iGateway)

<u>Relevant Use Cases</u>				UC01, UC02, UC03			
Input Parameters							
Attribute/Para- meter	Short Description	Data Type	Dato Forn	n nat	Value Range & Frequency	Data Received From	
Sphensor measures value	BRiG receives measurement data transmitted by Sphensor; all measurement s are grouped into a single message	UTC DateTime of measurem ent instant. Floating point array	Bina	ry	Value range: dependent on measure type. Frequency: asynchronous (push mode), dependent on configured tx rate, default 60"	Sphensor device	
Sphensor diagnostic information	BRiG receives diagnostic and status information	Informatio n kind dependent	Bina	ry	Information kind dependent	Sphensor device	
Set BRiG device configuration (command)	BRiG work mode is dependent of the parameters here specified. This includes i.e.: local network configuration, device name, external MQTT broker.	Command message unique identifier. Structure of BRiG configurat ion data	JSON	J	Information kind dependent; data is upgraded only in system/field configuration time	iGateway subsystem or other origin through MQTT message	

Read BRiG device configuration (command)	Read the BRiG configuration set by the relative command.	Command message unique identifier. Command only specificati on	JSON		iGateway subsystem or other origin through MQTT message
Add (set) field device (command)	Each device managed from BRiG is appropriately configured to be managed from BRiG	Command message unique identifier. Structure of device informatio n including communic ation informatio n, device registry communic ation mode (data pushed from device, sampling rate, etc.)	JSON	Device kind dependent; data is upgraded only in system/field configuration time	iGateway subsystem or other origin through MQTT message
Remove field device (command)	Remove from the internal field device list the one with the specified	Command message unique identifier. Field device	JSON		iGateway subsystem or other origin through MQTT message

	unique identifier	unique identifier			
Read all field device list (command)	Read a list of all field devices previously configured inside BRiG	Command message unique identifier. Unique device identifier; Device user assigned name	JSON		iGateway subsystem or other origin through MQTT message
Set output status on field device (command)	BRiG sends a command to a specific field device to set its output to the defined state	Command message unique identifier. Device unique id; device output channel; Boolean output status value	JSON	Device unique identifier must correspond to one defined in the device configuration list. Status value is boolean (off/on or 0/1). Channel number is dependent of the characteristics of the field device	iGateway subsystem or other origin through MQTT message
Read output status on field device (command)	BRiG reads the current output status from a	Command message unique identifier.	JSON	Device unique identifier must correspond to one defined in the device	iGateway subsystem or other origin through MQTT message

	specific field device	Device unique id; device output channel		configuration list. Channel number is dependent of the characteristics of the field device	
Set output value on Field device (command)	BRiG sends a command to a specific field device to set its output to the defined proportional value	Command message unique identifier. Device unique id; device output channel; percentag e of the full scale output value	JSON	Device unique identifier must correspond to one defined in the device configuration list. Proportional value is a percentage (0100%) of the full analog output scale. Channel number is dependent of the characteristics of the field device	iGateway subsystem or other origin through MQTT message
Read output value from field device (command)	BRiG reads the current output proportional value from a specific field device	Command message unique identifier. Device unique id; device	JSON	Device unique identifier must correspond to one defined in the device configuration list.	iGateway subsystem or other origin through MQTT message

		output channel		Channel number is dependent of the characteristics of the field device	
Read measured value from field device (command)	BRiG reads the current measured value from a specific field device	Command message unique identifier. Device unique id; device measure channel	JSON	Device unique identifier must correspond to one defined in the device configuration list. Channel number is dependent of the characteristics of the field device	iGateway subsystem or other origin through MQTT message
		<u>Out</u>	put Parame	<u>ters</u>	
Attribute/Para -meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Sent To
Sphensor measures value	BRiG sends measurement data received from Sphensor; all measurement s are grouped into a single message	UTC DateTime of measurem ent instant. Floating point array	JSON	Value range: dependent on measure type. Frequency: asynchronous (push mode), dependent on configured tx rate, default 60"	iGateway subsystem or other destination through MQTT message

Sphensor diagnostic information	BRiG sends diagnostic and status information received from Sphensor or elaborated by BRiG depending of the communicatio n status with each Sphensor	Informatio n kind dependent	Binary	Information kind dependent	iGateway subsystem or other destination through MQTT message
Set BRiG device configuration confirmation status	Result of the set BRiG configuration command	Command message unique identifier. Result code of the operation	JSON	Result ok, invalid data, general failure, etc.	iGateway subsystem or other destination through MQTT message
Read BRiG device configuration response	Answer of the read BRiG configuration, set by the relative command	Command message unique identifier. Structure of device configurat ion data.	JSON		iGateway subsystem or other destination through MQTT message
Add (set) field device confirmation status	Answer with the result of the add field device command	Command message unique identifier. Result code of	JSON	Result ok, invalid data, general failure, etc.	iGateway subsystem or other destination through MQTT message

		the operation			
Remove field device confirmation status	Answer this the result of the remove field device command	Command message unique identifier. Result code of the operation	JSON	Result ok, invalid data, general failure, etc.	iGateway subsystem or other destination through MQTT message
Read all field device list command response	Answer with the resulting list of field devices previously configured inside BRiG	Command message unique identifier. List of all devices user assigned name and unique identifiers	JSON		iGateway subsystem or other destination through MQTT message
Field device set output status command response	Answer with the result of the set output status command	Command message unique identifier. Result code of the operation	JSON	Result ok, invalid data, general failure, etc.	iGateway subsystem or other destination through MQTT message
Field device read output status command response	Answer with the status of the field device read output status command	Command message unique identifier. Device unique id;	JSON	Device unique identifier must correspond to one defined in the device	iGateway subsystem or other destination through MQTT message

		device output channel. Field device output status value		configuration list. Channel number is dependent of the characteristics of the field device	
Field device set output value command response	Answer with the result of the set output value command	Command message unique identifier. Result code of the operation	JSON	Result ok, invalid data, general failure, etc.	iGateway subsystem or other destination through MQTT message
Field device read output value command response	Answer with the status of the field device read output value command	Command message unique identifier. Device unique id; device output channel. Field device output value	JSON	Device unique identifier must correspond to one defined in the device configuration list. Channel number is dependent of the characteristics of the field device	iGateway subsystem or other destination through MQTT message
Field device read measured value command response	Answer with the status of the field device read measured	Command message unique identifier.	JSON	Device unique identifier must correspond to one defined in the device	iGateway subsystem or other destination through MQTT message

	value command	Device unique id; device output channel. Field device measured value			configuration list. Channel number is dependent of the characteristics of the field device	
Software Requirements/Development Language			Command and configuration messages are transmitted through MQTT protocol using the BRiG internal MQTT broker or, for debugging purpose, any external MQTT broker; this is a configurable option. Data storage inside BRiG uses Linux file system and a light SQL database file as SQLite or Inflex. Main program language is Python. Specific library code for hi-performance need can be written in C/C++, if required.			
Hardware Requirements			The RPi4 main memory storage can be a bottleneck for heavy data save & retrieval; an additional memory (i.e. USB stick) can be evaluated as additional mass storage.			
Communication	5			BRiG • • MQTT comm	uses these commu Thread protoco module for Sph Wi-Fi protocou module for sm LAN/WAN com router acting a Ethernet altern LAN/WAN com router).	unication channels: I with a specific internal radio ensor communication. I with RPi4 internal radio mart-plug/valve and generic munication (through a local s a Wi-Fi Access Point). Native of parallel to Wi-Fi for munication (through a local internal BR-iG subsystems change.

Status of the development of the component

Partially developed, only for Sphensor data communication.

7.2.2 CI lightweight edge algorithms for the management of the local flexibility

Table 18 CI lightweight edge algorithms for the management of the local flexibility (Edge Node)

Name of New Component/Service:	CI lightweight edge algorithms for the management of the local flexibility (Edge Node)				
<u>Түре:</u>	Software				
<u>Functionality:</u>	 An algorithm for computing the room air temperature set point for ensuring thermal comfort and health of occupants and for enabling energy flexibility and climate resilience. 1. Adaptive thermal comfort models (ASHRAE, EN) 2. Circadian Rhythm 3. Pre-cooling/pre-heating based on the flexibility demand signal 4. Pre-cooling/pre-heating based on forecasting of extreme weather conditions 				
<u>Input Connections & Interfaces:</u> From which components it receives input	Open-source Weather Databases (e.g., Meteostat)- API / Local Weather Station – API Cluster Node - JSON Sphensor Gateway - JSON Brig – JSON				
<u>Output Connections & Interfaces:</u> To which components it sends the results	IoT Control Device (smart valves, smart thermostats, smart plugs) - API BMS - API				
Relevant Use Cases	UC01, UC02, UC03				

Input Parameters							
Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From		
Historical data of outdoor air temperature (for at least the last 30 days)	A daily calculation of the Running mean average outdoor air temperature (Tave)	Float64, Time series (Datafram e)	JSON	Celsius (°C), [-30,60], one sample per day	Open Source Weather API using building coordinates / Local Weather Station		
Flexibility Signal		int	XML/JSO N	[0-5], 4 samples per hour (every 15 minutes)	Cluster Node		
Current value of each zone Air Temperature	PRMPB0402	Float64	JSON	Celsius (°C), [-30,60], 60 samples per hour (every 1 minute)	 Sphensor Gateway – BRIG 		
Current value of each zone Relative Humidity	PRMPB0402	Float64		%RH, [0,100], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG 		
Current value of each zone Atmospheric pressure	PRMPB0402	Float64		hPa, [600,1100], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG 		
Current value of each zone Illumination	PRMPB0402	Float64		klx, [0.1,90], 60 samples per hour	 Sphensor Gateway - BRIG 		

			(every 1 minute)	
Current value of each zone CO2, concertation	PRMPA0423	Float64	ppm, [0,5000], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG
Current value of each zone VOC	PRMPA0423	Float64	ppm, [0,1000], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG
Current value of each zone PM1	PRMPA0423	Float64	μg/m3, [0,1000], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG
Current value of each zone PM2.5	PRMPA0423	Float64	μg/m3, [0,1000], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG
Current value of each zone PM4	PRMPA0423	Float64	μg/m3, [0,1000], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG
Current value of each zone PM10	PRMPA0423	Float64	μg/m3, [0,1000], 60 samples per hour (every 1 minute)	 Sphensor Gateway - BRIG

Historical data of state of each zone		Float64 Time series (Datafram e)	JSO	N	60 samples per hour (every 1 minute)	Central Database
Historical data of set point temperature in each zone		Float64 Time series (Datafram e	JSO	N	60 samples per hour (every 1 minute)	Central Database
Output Parameters						
Attribute/Para -meter	Short Description	Data Type	Dat Fori	a mat	Value Range & Frequency	Data Sent To
Set point temperature in each zone		Float64	JSO	N	Celsius, [18,30], 4 samples per hour (every 15 minutes)	IoT Control Device (smart valves, smart thermostats, smart plugs) – API
Set point temperature in each zone		Float64	JSON		Celsius, [18,30], 4 samples per hour (every 15 minutes)	BMS - API
Software Requirements/Development Language				Pytho	n	
Hardware Requirements			None			
Communications				None		
Status of the development of the component				partially developed		

7.2.3 Edge Node: Building Thermal Optimization

Name of New Component/Service:	Edge Node: Building Thermal Optimization
<u>Түре:</u>	Software solution.
<u>Functionality:</u>	Optimise building-wise heat demand with respect to a price signal (modulo a positive scalar) subject to constraints on flexibility.
Input Connections & Interfaces: From which components it receives input	Time series of (timestamp, value) with a slight variation depending on the scenario (electricity, or heat).
	1. A 24 hour and hourly or more frequent weather forecast of the relevant outdoor temperature.
	2. Hourly or more frequent building outdoor temperature.
	2.1. Heat pump source temperature and secondary side supply temperature set point, and electricity demand.
	2.2. District heating secondary side temperature and the corresponding secondary side temperature set point, and heat demand.
	3. Hourly or more frequent building indoor temperatures and the corresponding thermostat temperature set points.
	4. Cluster Node price signal.

Table 19 Edge Node: Building Thermal Optimization

<u>Output Connections & Interfaces:</u> To which components it sends the results	Time series of (timestamp, value) with a slight variation depending on the scenario (electricity, or heat).1. Demand forecast.2. Temperature set point signals.
<u>Relevant Use Cases</u>	UC01, UC02, UC03

Input Parameters							
Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From		
1.	A 24 hour and hourly or more frequent weather forecast of the relevant outdoor temperature.	Atime series of (timestam p, value).	JSON and/or local SQLite database	Temperatures (K, resolution 10^{-3}) with a frequency between 12/h and 1/h.	Central database.		
2.	Hourly or more frequent building outdoor temperature.	A time series of (timestam p, value).	JSON and/or local SQLite database	Temperatures (K, resolution 10^{-3}) with a frequency between 12/h and 1/h.	Edge Node sensors.		

2.1.	Heat pump source temperature and secondary side supply temperature set point, and electricity demand.	A collection of time series of (timestam p, value).	JSON and/or local SQLite database	Temperatures (K, resolution 10^{-3}) with a frequency between 12/h and 1/h, and mean power values (W, resolution 10^{0}) with a frequency between 12/h and 1/h.	Edge Node sensors.
2.2.	District heating secondary side temperature and the corresponding secondary side temperature set point, and heat demand.	A collection of time series of (timestam p, value).	JSON and/or local SQLite database	Temperatures (K, resolution 10^{-3}) with a frequency between 12/h and 1/h, and mean power (W, resolution 10^{0}) with a frequency between 12/h and 1/h.	Edge Node sensors.
3.	Hourly or more frequent building indoor temperatures and the corresponding thermostat temperature set points.	A collection of time series of (timestam p, value).	JSON and/or local SQLite database	Temperatures (K, resolution 10^{-3}) with a frequency between 12/h and 1/h.	Edge Node sensors.

4.	Cluster Node price signal.	A time series of (timestam p, value).	JSOI and, loca SQLi data	N /or I ite abase	Unit (1, resolution 10^{-6}) with a frequency between 12/h and 1/h.	Cluster Node broadcast.
Output Parameters						
Attribute/Par a-meter	Short Description	Data Type	Data Fori	a mat	Value Range & Frequency	Data Sent To
1.	Demand forecast.	A time series of (timestam p, value).	JSON and/or local SQLite database		Mean power values (W, resolution 10^{0}) with a frequency between 12/h and 1/h.	The Central database, and the Cluster Node Fleet Management
2.	Temperature set point signals.	Time series of (timestam p, value).	JSOI and, loca SQLi data	N /or I ite abase	Unit (1, resolution 10^{-6}) with a frequency between 12/h and 1/h.	Edge Node actuators.
Software Requirements/Development Language			age	Python, SQLite, and a compatible MQTT solution, perhaps [paho-mqtt](https://pypi.org/project/paho- mqtt/).		
Hardware Requ	uirements			Resou	rces for running t	he software solution.
Communications				Access to a dedicated MQTT broker for cluster/edge and edge/edge communication, and a REST API to access the Central database to the end of populating		

	the loo weathe	er ar	databases, nd price fore	and casts.	to	access	continuous
Status of the development of the component	Started	ł.					

7.3 Cluster Layer7.3.1 Cluster Node Collective Privacy

Name of New Component/Service:			Cluster Node Collective Privacy			
<u>Туре:</u>				Archit	ectural principle.	
<u>Functionality:</u>				Restrict the solutions to never communicate private data and require the Central database API to implement differential privacy.		
Input Connections & Interfaces: From which components it receives input				Edge Node, Central Database		
<u>Output Connections & Interfaces:</u> To which components it sends the results			hich	Cluster Node		
<u>Relevant Use Cases</u>				UC03, UC04		
Input Pa				arameters		
Attribute/Para- meter	Short Description	Data Type Data Forn		a nat	Value Range & Frequency	Data Received From

Table 20 Cluster Node Collective Privacy

N/A	N/A	N/A	N/A		N/A	N/A
Output Parameters						
Attribute/Par a-meter	Short Description	Data Type	Data Format		Value Range & Frequency	Data Sent To
N/A	N/A	N/A	N/A		N/A	N/A
Software Requ	irements/Develop	oment Langu	age	N/A		
Hardware Requirements				N/A		
Communications				N/A		
Status of the development of the component				to be	developed from s	cratch

7.3.2 Cluster Node Fleet Manager

Table 21 Cluster Node Fleet Manager

Name of New Component/Service:	Cluster Node Fleet Manager
<u>Туре:</u>	Software solution.
Functionality:	Subject to the constraints dictated by Collective Privacy, use MQTT to collect self-reported cluster/edge and edge/edge communication, and report on the system health and performance in a way that facilitates strategic decisions on fleet operation and maintenance.

86

Input Connections & Interfaces: From which components it receives input				Access to a dedicated MQTT broker for cluster/edge and edge/edge communication.			
<u>Output Connections & Interfaces:</u> To which components it sends the results			A con report and a	A continuously populated SQLite database of self- reported cluster/edge and edge/edge communication and additional key performance indicators.			
<u>Relevant Use Cases</u>				UC01,	UC03, UC04		
		<u>Inp</u>	ut Pa	aramete	ers		
Attribute/Para- meter	Short Description	Data Type	^r ype Data Format		Value Range & Frequency	Data Received From	
Everything communicated through the MQTT broker.							
		<u>Out</u>	out P	arame	<u>ters</u>		
Attribute/Par a-meter	Short Description	Data Type	Data Fori	a mat	Value Range & Frequency	Data Sent To	
Everything comn	nunicated through	the MQTT br	roker	and ad	ditional key perfo	rmance indicators.	
Software Requirements/Development Language			age	Python, SQLite, and a compatible MQTT solution, perhaps [paho-mqtt](https://pypi.org/project/paho- mqtt/).			
Hardware Requ	irements			Resources for running the software solution.			
Communications			Access to a dedicated MQTT broker for cluster/edge and edge/edge communication.				
Status of the de	evelopment of the	e component	:	Not started.			

7.3.3 Cluster Node: Network Thermal Optimization

Name of New Component/Service:	Cluster Node: Network Thermal Optimization
<u>Түре:</u>	Software solution.
<u>Functionality:</u>	Optimise network-wise heat demand by constructing a price signal (modulo a positive scalar) to the end of advising the edge nodes of when to consume more and when to consume less.
Input Connections & Interfaces: From which components it receives input	Time series of (timestamp, value) with a slight variation depending on the scenario (electricity, or heat).
	 A 24 hour and hourly or more frequent weather forecast of the relevant outdoor temperature. A 24 hour and hourly or more frequent price forecast for the modulated resource (electricity or heat), or a closed form price signal (modulo a positive scalar) tailored to the scenario. The hourly or more frequent report of the total demand of the modulated resource (electricity, or heat) for the selected building stock. Note that, to achieve the desired outcome, the selected building stock need to reflect the demand to be modulated, which can be different from the demand of the modulated buildings, i.e., the demand of unmodulated buildings are likely to affect the location of the peek demand.

Table 22 Cluster Node: Network Thermal Optimization

<u>Output Connections & Interfaces:</u> To which components it sends the results	Time series of (timestamp, value) with a slight variation depending on the scenario (electricity, or heat).1. Demand forecast.2. Price signal (modulo a positive scalar).
<u>Relevant Use Cases</u>	UC01, UC03, UC04

Input Parameters						
Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From	
1.	A 24 hour and hourly or more frequent weather forecast of the relevant outdoor temperature.	A time series of (timestam p, value).	JSON and/or local SQLite database	Temperatures (K, resolution 10^{-3}) with a frequency between 12/h and 1/h.	The Central database.	
2.	A 24 hour and hourly or more frequent price forecast for the modulated resource (electricity or heat), or a closed form price signal (modulo a positive scalar) tailored to the scenario.	A time series of (timestam p, value).	JSON and/or local SQLite database	Unit (1, resolution 10^{-6}) with a frequency between 12/h and 1/h, or a formula on closed form.	The Central database, or local configuration.	

3.	The hourly or more frequent report of the total demand of the modulated resource (electricity, or heat) for the selected building stock.	A time series of (timestam p, value).	JSON and/ local SQLi data	l ′or te base	Mean power values (W, resolution 10^{0}) with a frequency between 12/h and 1/h.	The Central database.	
Output Parameters							
Attribute/Par a-meter	Short Description	Data Type	Data Format		Value Range & Frequency	Data Sent To	
1.	Demand forecast.	A time series of (timestam p, value).	JSON and/ local SQLi data	l ′or te base	Mean power values (W, resolution 10^{0}) with a frequency between 12/h and 1/h.	Cluster Node fleet management, Edge Node: Building Thermal Optimization	
2.	Price signal (modul, a positive scalar).	A time series of (timestam p, value).	JSON and/ local SQLi data	l ′or te base	Unit (1, resolution 10^{-6}) with a frequency between 12/h and 1/h.	Cluster Node fleet management, Edge Node: Building Thermal Optimization	
Software Requirements/Development Language				Python, SQLite, and a compatible MQTT solution, perhaps [paho-mqtt](https://pypi.org/project/paho- mqtt/).			
Hardware Requirements				Resources for running the software solution.			

Communications	Access to a dedicated MQTT broker for cluster/edge and edge/edge communication, and a REST API to access the Central database to the end of populating the local databases, and to access continuous weather and price forecasts.
Status of the development of the component	Started.

7.4 Application Layer7.4.1 Human-Building Interface (Edge Node)

Name of New Component/Service:	Human-Building Interface (Edge Node)
<u>Туре:</u>	Software – Run on the BRIG
<u>Functionality:</u>	The interface will give the ability to the user on the Edge Node (i.e., Building Occupant, Manager, Owner) to
	 Visualise data and analytics related to the indoor environmental conditions (i.e., thermal comfort, indoor air quality, and light), energy efficiency, cost savings, and data and trends meaningful and valuable to the each user category. Interact with edge node CI-based building control and management algorithms for setting up user preferences related to the operation of the control field devices i.e., smart valves, smart thermostats, existing BMS, such as schedules for allowing or not flexibility, setting points to the control filed devices, etc. Suggest optimization strategies for the optimal control of energy and environmental, notify alarms, collect user feedback

Table 23 Human-Building Interface (Edge Node)

Input Connections & Interfaces: From which components it receives input	Border Rooter (for data from the field devices) CI-based building control and management algorithms Building thermal optimization (Indoor Environmental Quality KPIs) User (i.e., Building Occupant, Manager, Owner)
Output Connections & Interfaces: To which components it sends the results	 Edge Node CI-based building control and management algorithms User (i.e., Building Occupant, Manager, Owner) Cluster Node: Network Optimization, thermal network optimization and aggregated flexibility management Collective Intelligence based control system
<u>Relevant Use Cases</u>	UC01, UC02

<u>Input Parameters</u>						
Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From	
N/A	N/A	N/A	N/A	N/A	N/A	
Output Parameters						
Attribute/Para -meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Sent To	
N/A	N/A	N/A	N/A	N/A	N/A	

Software Requirements/Development Language	Python, Influx DB and/or SQLite DB, MQTT based communication
Hardware Requirements	Sensors/Actuator data, RPi 4 on which deploy the SW
Communications	REST API, MQTT based communication
Status of the development of the component	This software component is going to be developed from scratch mainly by VIRTUAL in collaboration with the rest of the partners involved in T3.4. At the moment we are in the process of deriving the concept of the Human-Building interface based on the literature, existing Human-Building interfaces used in the industry, and a Questionnaire (see preliminary version of the Questionnaire in Annex 3/Figure 22) developed by the partners of the T3.4. The Questionnaire aims to conceptualize the exact functionalities of the interface. Specifically, it aims to identify the content of the HB-interface based on user category, using information form the list of KPIs (provided by D5.1.), the descriptive data of the units (room, apartment, building, cluster of buildings), and the output data of the COLLECTIEF's software components developed at both the Edge and Cluster Node. Moreover, the Questionnaire aims to extract the way the data will be visualized to each user category in order to be user-friendly and valuable.

7.4.2 Fully Integrated Dashboard (Cluster Node)

Table 24 Fully Integrated Dashboard (Cluster Node)

Name of New Component/Service:	Fully Integrated Dashboard (Cluster Node)				
<u>Туре:</u>	Software – Run on a Cloud or Server				
<u>Functionality:</u>	Fully Integrated dashboard aims to visualize information at the level of cluster of buildings to				

			users such as property owners and managers and energy providers (DSO).			
Input Connections & Interfaces: From which components it receives input			 Manly it will receive input information from the following components: Custer Node software components such as Collective Fleet Management Noda Network Optimization, thermal network optimization and aggregated flexibility management Collective Intelligence based control system Data and Trend analytics 			
<u>Output Connections & Interfaces:</u> To which components it sends the results			hich	High I	Level data visualiz	ration for the end user
<u>Relevant Use Ca</u>	<u>ses</u>			UC04		
Input Pc			ut Pa	ramete	<u>ers</u>	
Attribute/Para- meter	Short Description	Data Type	ata Type Data Format		Value Range & Frequency	Data Received From
N/A	N/A	N/A	N/A		N/A	N/A
		<u>Out</u>	put P	arame	<u>ters</u>	
Attribute/Para Short Data Type Dat -meter Description For			Dat Fori	a mat	Value Range & Frequency	Data Sent To
N/A	N/A	N/A	N/A		N/A	N/A
Software Requirements/Development Language			Python			
Hardware Requirements			Cloud			
Communications			REST API			

Status of the development of the component

This software component is going to be developed from scratch mainly by VIRTUAL in collaboration with the rest of the partners involved in T3.4. The partners of the T3.4 are in the process of deriving the architecture of the Fully Integrated Dashboard based on a Questionnaire (see preliminary version of the Questionnaire in Annex 3/Figure 22). The Questionnaire aims to conceptualize the exact functionalities of the interface. Specifically, it aims to identify the content of the dashboard based on user category, using information form the list of KPIs (provided by D5.1.), the descriptive data of the units (cluster of buildings), and the output data of the COLLECTiEF's software components developed at the Cluster Node. Moreover, the Questionnaire aims to extract the way the data will be visualized to each user category in order to be user-friendly and valuable.

8 Conclusion

This report has presented the architectural design of the COLLECTIEF system along with the respective system specifications. The methodology followed to define the details of the architectural elements that make up the architecture of the COLLECTIEF system was initially described. The COLLECTIEF conceptual architecture was then analysed, as well as the structural, development, deployment and dynamics view of the system.

The architectural views and perspectives presented in this result will further guide design and implementation during the project's lifetime. UML diagrams illustrate the main components of the COLLECTIEF system, the key players and how they interact with the system. Moreover, the detailed description of the architectural elements provides a comprehensive view of the COLLECTIEF components focusing mainly on its major architectural elements and providing the first version of the project use-cases and sequence diagrams, which allow to reason and describe the dynamic behaviour of the system. The analysis presented for each architectural element, which includes data inputs and outputs, the interrelation between system entities and correlation with their respective use cases and key system requirements, will allow developers and component integrators to communicate about architectural problems in the most efficient and effective way.

Although no substantial changes are expected to the overall architecture of the COLLECTIEF system and its core components, this report can be considered as a living document that will address further refinements that might be necessary in case of new modifications that will come up during the implementation phase. It is worth mentioning that all key partners responsible for component development were involved in defining the architectural elements process. The involvement of developers in the architecture refinement process was significant because it led to a more coherent definition of the architecture (and its architectural elements), which also encompassed the point of view of the developers.

In summary, this result provides a sufficient basis for the technical developments of the COLLECTIEF system that will take place in WP3, while the actual architectural elements of each framework will be implemented (WP3) and validated (WP4).

96

Annex 1: Use Case Description Template

Table 25 Use Case description template

UC Description					
UC Name	Use Case name, which uniquely identifies the UC (e.g. unique identifier), having an achievable goal				
Version	To inform the user the stage a use case has reached.				
Authors	Who created and who documented the Use Case				
Last Update	Date of the last update				
Brief Description	Description of the series of steps for the defined use case in a clear concise manner. Including what the COLLECTIEF system shall do for the involved actor to achieve a particular goal.				
Assumptions and Pre-Conditions	The conditions that generally does not change during the execution and should be true to successfully terminate the use case. Moreover, pre-conditions define all the conditions that must be met (i.e., it describes the state of the system) to meaningfully cause the initiation of the use case.				
Goal (Successful End Condition)	The ultimate aim and end condition(-s) of the Use Case				
Post-Conditions	The state of the world upon successful completion				
Involved Actors	Who are the actors involved in the use case? The same actor may play two different roles in the same use case. An actor may be a person, a device, another system or sub- system, or time. Actors represent different roles that something outside has in its relationship with the system, functional requirements of which are being specified.				
UC Initiation	This refers to the potential triggers or events that could initiate the use case. The type of trigger can be temporal, internal or even in respond to an external event. Normally, the initiation of a UC shall take into account also the pre- conditions, e.g., checking them prior the execution of the UC.				
Main Flow	Unconditional set of steps that describe how the use case goal can be achieved and all related stakeholder interests can be satisfied.				

97

Alternative Courses	Description of the alternative course of events.					
Relationships with other UCs	Indication of connection with other use cases					
Architectural Elements / Services Involved	Indication of COLLECTIEF elements involved					
UML Sequence Diagram						
Diagram showing process interaction engineering.	ons arranged in time sequence in the field of software					

Annex 2: Architectural Specifications Template

Name of New Component/Service:	< name of the architectural element e.g., Edge Node>
<u>Туре:</u>	<component, device="" etc.="" software,=""></component,>
<u>Functionality:</u>	<please a="" and="" be="" component.="" could="" description="" functions="" here="" list="" module="" of="" operation="" operations="" short="" the="" this="" valuable.="" write=""></please>
Input Connections & Interfaces: From which components it receives input	<please components="" from="" it="" receives<br="" the="" which="" write="">input (input dependencies) along with the available connection interfaces e.g., API etc.></please>
<u>Output Connections & Interfaces:</u> To which components it sends the results	<please components="" it="" sends="" the="" the<br="" to="" which="" write="">results (output dependencies) and mention also the available interfaces e.g., API etc.></please>
<u>Relevant Use Cases</u>	<please by="" case(s)="" cases="" ids="" is="" module="" of="" participating,="" respective="" specify="" the="" use="" where="" writing=""></please>

Table 26 Architectural Components Detailed Specifications Template

In	out Parameters

Attribute/Para- meter	Short Description	Data Type	Data Format	Value Range & Frequency	Data Received From
<please mention the input parameters. Each row corresponds to a single</please 	<mention a<br="">short description of the input parameter if necessary></mention>	<please mention the data type of this parameter (e.g., int,</please 	<e.g. XML, JSON etc.></e.g. 	<indicate measurement unit and range of values for this attribute/para meter and</indicate 	<please mention="" source<br="" the="">component or module that provides input data to this parameter></please>
parameter>		string, etc. or			

		complex type, e.g., list, object, etc.)			frequency- sample rate>	
		<u>Out</u>	put P	arame	ters	
Attribute/Para -meter	Short Description	Data Type	Dat Fori	a mat	Value Range & Frequency	Data Sent To
<please mention the input parameters. Each row corresponds to one parameter></please 	<mention a<br="">short description of the input parameter if necessary></mention>	<please mention the data type of this parameter (e.g., int, string, etc. or complex type, e.g., list, object, etc.)</please 	<e.g. XML, JSON etc.></e.g. 		<indicate measurement unit and range of values for this attribute/para meter and frequency- sample rate></indicate 	<please source<br="" the="" write="">component or module that provides input data to this parameter></please>
Software Requirements/Development Language		<pre><specify are="" related<br="" requirements="" software="" that="" the="">to the architectural element, explain the Programming Language that is used during the development of the component></specify></pre>		requirements that are related ral element, explain the age that is used during the omponent>		
Hardware Requirements		<spec giving requii functi</spec 	ify the hardwar specification rements which conality of the co	e requirements of the module, as about the hardware are necessary for the best amponent>		

	In case of any extra sensors needed, which will also be included in the sensor specification template, it can be cross-referred here.
Communications	<address communication="" requirements<br="" specific="">either for data input or for data output></address>
Status of the development of the component	<specify "already="" component="" developed"="" if="" is="" or<br="" the="">"partially developed" or "to be developed from scratch"></specify>

Annex 3: User-friendly human-building interface: the concept for COLLECTIEF Edge Node

Building interfaces and how their design, context (e.g., location), and underlying logic have a significant impact on their usability and occupants' perceived control, resulting comfort and energy performance of buildings. Human-building interface interactions are complex, more research is required to understand design, use, and characteristics. In the past, researchers attempted to explain occupants' interactions with buildings. A research paper [10] made an effort to model building-human interactions as illustrated in Figure 19.

Figure 19 Conceptual model for understanding the occupant engagement with building interfaces

From the IEA-EBC Annex 79 [11] perspective, occupant-centric building design means to place occupant needs (comfort and health) as a priority and to use explicit occupant modelling to design building interfaces and recognize the bi-directional interaction between occupants and buildings. A paradigm shift is required, whereby practitioners transition from seeing occupants as sources of indoor heat gains and contaminants who are content with standardized indoor environmental conditions to understand that there is a complex and dynamic bi-directional interaction between occupants and buildings. This shift, which is presented in Figure 20, is supported by new knowledge, increased recognition of the value of healthy and comfortable environments, new enabling technologies and techniques (sensing and communication technology, analytical methods, computational power), and acknowledgement that occupants are an increasingly important factor for low- energy buildings.

Figure 20 Paradigm shift from occupants and passive participants in buildings to active and dynamic elements in a complex two-way relationship

This project has received funding from the European Union's H2020 research and innovation programme under Grant Agreement No 101033683

Occupant-centric control (OCC) involves the sensing of actual indoor environmental quality, occupants' presence, and occupants' interactions with buildings and feeding this information directly back into control algorithms to achieve both high levels of energy efficiency and comfort, while maintaining usability and perceived control. The seven broad OCC categories listed in Figure 21 were defined. The first three of these categories rely on presence sensing technologies to modify building-level on-off or zone-level temperature setback schedules for HVAC and to switch off electric lighting in vacant lighting zones. The categories four and five modulate the airflow rates of HVAC systems (e.g., AHUs and VAV terminal units) at the building- and zone-level, respectively. The categories six and seven adapt the indoor temperature and illuminance setpoints during occupancy to preferred indoor climatic conditions. For each of the seven broad control categories, several experiments in different climatic conditions and building types will be carried out.

- ① Scheduling system-level equipment based on first arrival and last departure times in a building
- ② Applying zone temperature setback based on first and last arrival and last departure times
- ③ Switching off lights based on vacancy detection
- ④ Modulating minimum outdoor airflow setpoint based on system-level occupancy
- S Modulating minimum airflow setpoint based on zone-level occupancy
- 6 Adapting zone temperature setpoints based on learned temperature preferences
- Adapting illuminance setpoints based on learned illuminance preferences

In conclusion, occupant-centricity also has to be an integral part of building operation and management. Consequently, occupant-centric control (OCC) strategies in order to detect occupants, learn about their comfort requirements, and train models on their behaviour have to be implemented into building management systems. Research has to be conducted to find the right balance between manual and automated controls and on how the design and configuration of control interfaces affect the performance of OCC algorithms. Further, the suitability of different OCC strategies for the respective building use has to be investigated.

The COLLECTIEF project will take into consideration the aforementioned studies on the modelling of the human-building interfaces and the need for occupant-centric control strategies, for designing a human-building interface for the Edge Node. The objective is to define a concept that is capable of receiving feedback from the user and using machine-learning techniques to adapt the indoor environmental condition based on the user preference but without excluding the needs for energy flexibility. In order, first to identify the key functionalities of the human-building interface, a Questionnaire is developed see Figure 22. This preliminary version of the Questionnaire aims to identify the content of the HB-interface based on user category, using information from the list of KPIs (provided by D5.1.), the descriptive data of the units (room, apartment, building, cluster of buildings), and the output data of the COLLECTIEF's software components developed at both the

Edge and Cluster Node. Moreover, the Questionnaire aims to extract the way the data will be visualized to each user category in order to be user-friendly and valuable.

									User cates	zories				Data Visualization									
						Ed	ge Node Us	ers	Cluster		r Node Use	rs		Single	value		Time se	ries		_	Bar Chart	Heatmap	
				Data availablity		Buildin	a Owner	Building	Manager	Property Manager	Propert	v Owner				last	12 hours						
-			Yes Mo	Available temporal recelution	Occupant	Concumor	Brorumor	Coorumor	Procumor	Coorumor Brocumor	Concurnor	Rescuence	050	Current Value	Manaustra	werpro (1 hour	autoran /12 hours	24 hours	Week Mee	A Year			
			respired	Analisole temporarresolution	 	Conserver	riosumer	contrainter	riorumer	contrainer Protoinier	Consumer	FIGSUINES	_	Content Parde	The second second	evenage/ x noor	average/ 12 mours	14110013	THEFT	-	-		
		1. Air temperature	Yes	1 sample/min																4	-		
		Mean radiant temperature																		4			
		3. Globe temperature																			('		
	8	4 Operative temperature	Yes	1 cample/min																-			
10		f forders to many the second					-													-			
ē	*	5. Surrace temperatures																	++	_	<u> </u>		
8	2	6. Airvelocity																		<u> </u>			
ental para		7. Metabolic rate	Yes (POE q	twice a week								1 1									(I		
		8 Clothing insulation	Yes (POE o	twice a week																-			
		A Abarlaha haraldha af bha ala											-							-		-	
		 Absolute humidity of the an 																	++	_	<u> </u>		
6		10. Relative humidity	Yes	1 sample/min																4	('		
ŝ																							
2		1 Outdoor air temperatum	Yor	1 comelo / 10 min																-			
		Outdoor an temperature	14.3	1 millioney 10 million							-	-	_						++	_		<u> </u>	
	<u>š</u>	 Outdoor running mean temperature 	Yes	1 sample/ 10 min															++	_	<u> </u>	_	
	8	Prevailing mean outdoor air temperature	Yes	1 sample/ 10 min																4			
	ő	 Global horizontal solar irradiance 	Yes	1 sample/10 min																	(
		5 Global horizontal color impediation	Vor	1 comolo/10 min																_		1	
											-		_							_	-		
																				_	<u> </u>		
		 PMV - Predicted Mean Vote 	Yes (1)																	4	(
		 PPD - Predicted Percentage of Dissatisfied 	Yes (1)																				
		2 ALD - ASHRAE Likelihood of Directicfaction																		_		1	
-		3. ALD - RATING CHAINING OF DISSESSION																	+	_	-	+	
		 NaUK - NICOLS et a. S Overheating NSK 																		_	<u> </u>		
	8	Percentage of time outside a PMV range										1 1									1 1		
	8	Percentage of time outside an operative temperature range																					
	-	7 Danas have									1									_	-	1	
-	1		1	++	 	1		-		i	1			1					++	-	-	t	
L		8. PPD-weighted criterion		I	L		L	L	L			-		I				_	$ \rightarrow $		<u> </u>		
		9. Average PPD				L			L		L										<u> </u>		
		10. Sum PPD																					
			1		1	1		1			1	-		1					· · · ·	-	-		
L			+		 	1		ł			+	-		1						_	<u> </u>	<u> </u>	
	2		L			I					I											1	
		1. Carbon dioxide (CO2)	Yes	1 sample/min		1					1										(1	
	8 ≦	2 Total volatic compounds (TVOCs)	Yes	1 cample/min																-			
<u> </u>	83	2 Destinuine antipolitica (1904)	1.68	A semiale faste	I	1		I			1									4		+	
	- 8	 Particulate matter (PM10, PM2.5) 	Yes	1 sample/min																4	<u> </u>		
																				<u> </u>	()		
		1 Illuminance	Yes	1 cample/min																			
-	-	2 Des (labe 4 stars are (D1)											-							-		-	
	-	z. baynym Autonomy (bA)																	++	_	<u> </u>		
	~	 Continuous Daylight Autonomy (DA_CON) 																		4	<u> </u>		
	\$	 Useful Davlight Illuminance (UDI) 																					
	2	5 Illuminance Liniformity (II. 0)																		_		1	
	-	3. Indiminance drifter mitty (0.0)	-								-	-	_						++	_		<u> </u>	
		 Wrenold et al.'s simplification of Discomfort Glare Probability 																		_	<u> </u>		
		Hviid et al.'s simplification of Discomfort Glare Probability										1 1									(I		
	1																			-	-		
_	1		-								-	-	_				1		<u> </u>	_	-	<u> </u>	
2			-																++	_	<u> </u>	_	
> 0		 Change of electric load on the grid 																		4			
ie 6		Electric self-consumption change (in case of an electric local production)																			\sim		
8 9		3 Primary energy balance																		-			
																				-	-		
																			<u> </u>	_	<u> </u>	_	
		Climate resilience and flexibility:																		4	(
		1. Flexibility Factor (DEF)																					
-		2 Antiber Contract (AC)											-							-		-	
		z. Agiity Factor (AF)									-		_							_			
		Number of thermal apper			~						1									T	<u> </u>	1	
0 2 2	c		_		 	-			_				_						+	-	-	-	
288	8	10e4			x															_			
232	8	Oriantation			×																(
283	5 m	Number of rooms																					
2 7 8	25	Area.																		_		1	
2 5 2	£ 2	P1118	_			-					_									_	-	-	
n to p	<u>5</u> 2	location																		_			
0 0 0	20																						
5 2 0		Cluster of Buildings				1								1								1	
e e e e e e e e e e e e e e e e e e e			1			1			1		1	1	- 1	1			1			-	-	1	
S of La			-			-	-				-		_						++-	_	<u> </u>	-	
818																				_	-		
3 0 E																					('		
- <u>8</u> 8		Power Distribution Level																			-		
																				_	_	-	
-			-																				
10	Edge DBMS																						
÷	and a more		-			-					-		-							-		-	
8	Edge Node Resource Management																				('		
8																							
ă.	Device identity Management																				('		
š.	Ciliphtweight erige algorithms for																			_			
8	the second second second																				('		
z	the management of the local																				('		
<u>8</u>	flexibility																						
ŵ	Building thermal optimization																				(\cdots)		
																				_	_		
-			-											-						+			
L			_			-	_				_	-	_						+	+	_		
	Persistent Data Storage and					1					1										(<u> </u>	1	
	Management (DBMS such as		1	1 1	1	1		1	1	1 1	1	1 1		1		1	1		1 1	1 1	(¹	1	
			1	1 1	1	1		1	1	1 1	1	1 1		1		1	1		1 1	1 1	(¹	1	
	rusigresult, Mysult, MongoDB or		1	1 1	1	1		1	1	1 1	1	1 1		1		1	1		1 1	1 1	(¹	1	
	AWS)					L					L								1 1	1.1	<u> </u>		
57	Collective privacy (to be applied to				-						1		1							-	\sim		
8	the sector detailed to		1	1 1	1	1		1	1	1 1	1	1 1		1		1			1 1	1 1	(¹	1	
2	une central database)																		++	_	· · · · · ·	-	
ě.	Collective Fleet Management					L					L									7	<u> </u>	L	
- S				1		1			1		1	1											
	Noda Network Optimization,		1	1 1	1	1		1	1	1 1	1	1 1		1		1			1 1	1 1	(¹	1	
8	thermal network optimization and		1	1 1	1	1		1	1	1 1	1	1 1		1		1			1 1	1 1	(¹	1	
ž	and the light sector and		1	1	1	1	1	I.	1	1 1	1	1		1		1	1		1 1	1 1	(¹	1	
to to	regregated flexibility management		1	1 1	1	1		1	1	1 1	1	1 1		1		1			1 1	1 1	(¹	1	
- A	Collective Intelligence have 1		1		l	1			1		1	1	- 1	1			1						
· ·	control or interrigence based		1	1 1	1	1		1	1	1 1	1	1 1		1		1			1 1	1 1	(¹	1	
	control system			I					L					1					++	4	<u> </u>	+	
	Data and Trend analytics					1		I			1 -								1 1	17	([–]	1	
	(visualization -> move to		1	1 1	1	1		1	1	1 1	1	1 1		1		1			1 1	1 1	(¹	1	
	treat estraileer		1		1	1		1	1	1 1	1	1		1		1	1		1 1	1 1		1	

Figure 22 A sample of the preliminary Questionnaire developed to conceptualize the exact functionalities of the Human-Building interface and the Fully Integrated Dashboard.

References

- [1]. Kruchten, P. B. (1995). The 4+ 1 view model of architecture. IEEE software, 12(6), 42-50.
- [2]. MQTT protocol, <u>https://mqtt.org/</u>.
- [3]. Modbus Protocol, <u>https://modbus.org/</u>.
- [4]. Bacnet Communication Protocol, <u>http://www.bacnet.org/</u>.
- [5]. NODA Self-host, https://github.com/self-host/self-host#documentation
- [6]. IEC 62559-2:2015: UC methodology Part 2: Definition of the Templates for UCs, Actor List, and Requirements List, 2015.
- [7]. Agile Modelling, UML2 Use Case Diagrams, available under <u>http://www.agilemodeling.com/artifacts/useCaseDiagram.htm</u> (state on September 2013).
- [8]. Carnegie Mellon community, UML Use Case Diagrams: Tips and FAQ, available under <u>http://www.andrew.cmu.edu/course/90-754/umlucdfaq.html</u> (state on September 2013).
- [9]. StarUML ,Modelling with Class Diagram, available under http://staruml.sourceforge.net/docs/user-guide(en)/ch05 2.htm
- [10]. J. K. Day et al., "A review of select human-building interfaces and their relationship to human behavior, energy use and occupant comfort," Build. Environ., vol. 178, Jul. 2020, doi: 10.1016/J.BUILDENV.2020.106920.
- [11]. W. O'Brien et al., "Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation," Build. Environ., vol. 178, p. 106738, Jul. 2020, doi: 10.1016/J.BUILDENV.2020.106738.

