
 1 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

REPORT ON COLLECTIEF CLUSTER NODE 

 

 

Project acronym:  COLLECTiEF 

Project title:  Collective Intelligence for Energy Flexibility 

Call:  H2020-LC-SC3-2018-2019-2020 

 

 

Ref. Ares(2023)3774465 - 31/05/2023



 2 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

Disclaimer  
COLLECTiEF project has received research funding from European Union's H2020 research and 

innovation program under Grant Agreement No 101033683. The contents and achievements of this 

deliverable reflect only the view of the partners in this consortium and the European Commission Agency 

is not responsible for any use that may be made of the information it contains.   

Copyright- The COLLECTiEF Consortium, 2021 - 2025 

 

  

 
Project no.  101033683 

Project acronym:  COLLECTiEF 

Project title:  Collective Intelligence for Energy Flexibility 

Call:   H2020-LC-SC3-2018-2019-2020 

Start date of project: 1 June 2021 

Duration:  48 months 

Deliverable title:  Report on COLLECTiEF Cluster Node 

Deliverable No.: D3.4 

Document Version: 2.1 

Due date of deliverable: 

Actual date of submission: 

Deliverable Lead Partner: 

31.05.2023 

31.05.2023 

Partner No. 7, NODAIS AB (NODA) 

Work Package: 3 

No of Pages: 26 

Keywords: architecture, brig, broker, client, cluster node, container, containerized, 
database, decentralized, distributed, docker, docker-compose, edge 
node, eventual consistency, message passing, mqtt, multi-agent system, 
mysql, postgresql, publish-subscribe, server 



 3 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

Name Organization 

Jens Brage Partner No. 7, NODA 

 

Dissemination level 

PU Public  

 

History 

Version Date Reason Revised by 

1.0 20.05.2023 First version Jens Brage, NODA 

1.1 24.05.2023 Internal review 
Kavan Javanroodi, 
ULUND 

2.0 25.05.2023 Final version Jens Brage, NODA 

2.1 31.05.2023 Final approval 
Mohammadreza 
Aghaei, NTNU 

  



 4 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

Executive Summary 
 

This deliverable reports on Task 3.3, Implementation of the Cluster Node. It details the architecture of the 

cluster node, motivates technical decisions, and explains how the architecture supports the COLLECTiEF 

solution. Since the report is public, it avoids possibly confidential algorithms. Instead, it focuses on 

architecture and how to provide a general framework sufficient for the NODA solution as well as the novel 

demand side management (DSM) solution (called nDSM in this report) but abstracts over the details of the 

latter. 

In addition to the above, the work exemplifies the benefits of frameworks for eventual consistency, 

preferably with support for automatically deriving the corresponding message passing from application-

specific use of persistent memory. And while the report does not provide such a framework, it provides a 

light-weight substitute and details how it can be used to implement parts of the COLLECTiEF solution. 

  



 5 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

Table of Contents 
Executive Summary ............................................................................................................................... 4 

Table of Contents ................................................................................................................................... 5 

1. Introduction ............................................................................................................................ 9 

2. Architecture, Software ......................................................................................................... 10 

3. Architecture, System ........................................................................................................... 17 

4. Integration with other Components ..................................................................................... 25 

 

  



 6 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

List of Acronyms 
  

API Application Programming Interface 
BRIG Borted Router + iGateway (Edge Node) 
CI Collective Intelligence 
D Deliverable 
DSM Demand Side Management 
ECMWF European Centre for Medium-Range Weather Forecasts 
JSON JavaScript Object Notation 
JSONB JavaScript Object Notation, Binary 
MPC Model Predictive Control 
MQTT(S) Message Queuing Telemetry Transport (Secure) 
nDSM novel Demand Side Management 
RL Reinforcement Learning 
UUID Universally Unique IDentifier 
WP Work Package 

 

  



 7 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

List of Figures 
 

Figure 1 Example Configuration, where node1 = Cluster Node and node2 = Edge Node ..........19 

 

  



 8 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

List of Tables 
Table 1 Database Table Structure (s, sindex, t, tindex) .............................................................10 

Table 2 Data Model Data Classes (TDumps, SDumps) .............................................................11 

Table 3 Data Model (TIndex, T, SIndex, S) ...............................................................................12 

Table 4 Message Payload Data Class (Payload) ......................................................................15 

Table 5 Default Client (DefaultClient) ........................................................................................15 

  



 9 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

1. Introduction 

This deliverable reports on Task 3.3, Implementation of the Cluster Node. It details the architecture of the 

cluster node, motivates technical decisions, and explains how the architecture supports the COLLECTiEF 

solution. Since the report is public, it avoids possibly confidential algorithms. Instead, it focuses on 

architecture and how to provide a general framework sufficient for the NODA solution as well as the demand 

side management (nDSM) solution but abstracts over the details of the latter. 

The Cluster Node is not an isolated component but depends on its environment for weather forecasts and 

communication with the Edge Node. Moreover, beyond the algorithms implemented by the Cluster Node 

and Edge Node, it is necessary to make sure that the solutions for distributed persistent memory and 

communication can be configured, tested, and evaluated in a controlled manner in preparation for 

deployment. The situation is complicated by the asynchronous and decentralized nature of the system, but 

by providing mock-ups of the environment as well as the Edge Node and its interactions with sensors and 

actuators, progress can be made. To this end, this report does not only concern itself with the Cluster Node, 

but also provides architecture for an Edge Node running the NODA solution. 

The approach permits the NODA and nDSM solutions to be run concurrently on the Cluster Node and to 

delay the combination of the corresponding energy cost and energy mode until on the Edge Node, where 

the energy mode is just another name for the flexibility signal by the nDSM solution. This can presumably 

be done in several ways, but this report only considers the following mechanism: 

• For energy_mode == 0, or the absence of a recent energy mode, the NODA solution controls the 

edge. 

• For energy_mode >= 1, the nDSM solution controls the edge. 

In short, the report covers the Cluster Node as well as parts of the Edge Node but abstracts over sensors 

and actuators. And while it remains to align on some details of the Edge Node pertaining to sensors and 

actuators, the remaining work is expected to be manageable. 

The report consists of two parts, Section 2, which describes a further development of the collectief-

members/minimas framework of D2.1, and Sections 3-4, which describe how the framework can be used 

to implement the desired functionality of the Cluster Node and more. The code is currently being migrated 

to the GitHub repository collectief-members/cluster-node. The repository name reflects the project plan but 

is otherwise a misnomer as the content cuts across several different domains such as the Cluster Node, 

the Edge Node, algorithms, and the communication layer. 

  

https://github.com/collectief-members/minimas
https://github.com/collectief-members/minimas
https://github.com/collectief-members/cluster-node


 10 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

2. Architecture, Software 

Decentralized systems and more generally, distributed systems, are well known to be challenging to design, 

develop and maintain, and how to overcome these challenges constitute an active area of research. The 

approach presented here is inspired by the two recent and related developments of conflict-free replicated 

data types (CFRD) and eventual consistency. The idea is to structure distributed state in such a way that 

the various parts can be merged into a global state through the exchange of patches in a way that largely 

does not depend on the order of the exchange. And while this is still an active area of research, it is possible 

to achieve some of the benefits by adhering to the following principles: 

• Every part of the system should use the same table structure for its database. 

• The table structure should permit different databases of the same system to be merged into one 

database without risk of confusion of what entries belong together. 

• While every part of the system can in principle be allowed to inspect the entire global state, it is 

only allowed to update its local state. 

• There is a way to communicate those updates to the global state that occur in practice. 

Adhering to the above principles, it is possible to use a publish-subscribe messaging patten to synchronize 

the global state across the local instances. However, to uphold privacy, is necessary to keep track of who 

is allowed to inspect what part of the global state and to restrict the messages accordingly. Ideally, the 

rights management should be expressed in code and the synchronization derived from the rights 

management. However, a general solution is beyond the scoop of the project, and the message exchange 

will be implemented by hand. 

Another and related challenge with decentralized and distributed systems is how to avoid introducing errors 

as part of the work of configuring such a system. And while a configuration can be equated to a message 

expressing an update to the global state, unless the message format is simple enough to rule out errors in 

the first place, the work of configuring the system is likely to require greater effort than desired. For example, 

consider the need to relate different parts of the system by mentioning a corresponding key in more than 

one place. Although simple in the small, it should be avoided in the large. 

2.1. Framework 

The challenge of relating different parts of the system without mentioning a corresponding key in more than 

one place can be avoided by restricting attention to tree-shaped structures. Fortunately, this applies to the 

part of the COLLECTiEF solution under consideration, and it turns out that following PostgreSQL table 

structure suffices: 

Table 1 Database Table Structure (s, sindex, t, tindex) 

```postgresql 

DROP TABLE IF EXISTS t; 

 

DROP TABLE IF EXISTS s; 

 

CREATE TABLE s( 

    coindex SERIAL8 PRIMARY KEY, 

    covalue INT8 REFERENCES s(coindex) ON DELETE CASCADE, 

    index TEXT, 

    value JSONB, 

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Publish–subscribe_pattern
https://en.wikipedia.org/wiki/PostgreSQL


 11 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

    UNIQUE (covalue, index) 

); -- spatial 

 

CREATE INDEX sindex ON s(covalue, index); 

 

CREATE TABLE t( 

    coindex SERIAL8 PRIMARY KEY, 

    covalue INT8 REFERENCES s(coindex) ON DELETE CASCADE, 

    index TIMESTAMP, 

    value FLOAT8, 

    UNIQUE (covalue, index) 

); -- temporal 

 

CREATE INDEX tindex ON t(covalue, index); 

``` 

 

The table structure expresses a forest of trees where every s-node has a locally unique index: TEXT, a 

value: JSONB, and some associated time series data. The content can be serialized and deserialized using 

dataclasses and dataclasses_json, and by permitting None in some places, the corresponding messages 

can also be used to delete content. 

Table 2 Data Model Data Classes (TDumps, SDumps) 

```python 

@dataclass_json 

@dataclass 

class TDumps: 

    index: datetime 

    value: float 

 

@dataclass_json 

@dataclass 

class SDumps: 

    index: str 

    value: Any # no direct counterpart for JSONB 

    tdumps_list: list['TDumps'] 

    sdumps_list: list['SDumps'] 

``` 

 

The uniqueness constraints are necessary for the intended interpretation of patch: list['SDumps']. 



 12 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

Given the uniqueness constraints, the table structure can in principle be serialized and deserialized using 

dictionaries. However, without the uniqueness constraints, associative lists better reflect the semantics. 

Consequently, the corresponding classes (TIndex, T, SIndex, S) uses associative lists.1 

Table 3 Data Model (TIndex, T, SIndex, S) 

```python 

class TIndex(object): 

 

    def __init__(self, cursor: Cursor, covalue: int | None = None) -> None: 

        … 

     

    def __getitem__(self, index: datetime | None) -> list['T']: 

        … 

 

    def __setitem__(self, index: datetime | None, dumps_list: list['TDumps']) -> None: 

        … 

 

    def dumps(self) -> list['TDumps']: 

        … 

 

class T(object): 

 

    def __init__(self, cursor: Cursor, covalue: int | None = None, index: datetime | None = None, value: float | None = 

None, coindex: int | None = None) -> None: 

        … 

 

    @property 

    def covalue(self) -> int | None: 

        … 

 

    @covalue.setter 

    def covalue(self, covalue: int | None) -> None: 

        … 

 

    @property 

    def index(self) -> datetime: 

        … 

 

    @index.setter 

    def index(self, index: datetime) -> None: 

 

 

1 If I, the author, where to rework this solution, then I would start with a structure of nested dictionaries, 

guaranteeing local uniqueness by design, and then worry about how to implement a corresponding ORM. 



 13 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

        … 

 

    @property 

    def value(self) -> float: 

        … 

 

    @value.setter 

    def value(self, value: float) -> None: 

        … 

 

    def dumps(self) -> 'TDumps': 

        … 

 

class SIndex(object): 

 

    def __init__(self, cursor: Cursor, covalue: int | None = None) -> None: 

        … 

     

    def __getitem__(self, index: str | None) -> list['S']: 

        … 

 

    def __setitem__(self, index: str | None, dumps_list: list['SDumps']) -> None: 

        … 

 

    def dumps(self) -> list['SDumps']: 

        … 

 

 

class S(object): 

 

    def __init__(self, cursor: Cursor, covalue: int | None = None, index: str | None = None, value: Any | None = None, 

coindex: int | None = None) -> None: 

        … 

 

    @property 

    def covalue(self) -> int | None: 

        … 

 

    @covalue.setter 

    def index(self, covalue: int | None) -> None: 

        … 

 

    @property 

    def index(self) -> str: 

        … 

 

    @index.setter 



 14 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

    def index(self, index: str) -> None: 

        … 

 

    @property 

    def value(self) -> Any: 

        … 

 

    @value.setter 

    def value(self, value: Any) -> None: 

        … 

 

    @property 

    def sindex(self) -> 'SIndex': 

        … 

 

    @sindex.setter 

    def sindex(self, dumps_list: list['SDumps']) -> None: 

        … 

 

    @property 

    def tindex(self) -> 'TIndex': 

        … 

 

    @tindex.setter 

    def tindex(self, dumps_list: list['TDumps']) -> None: 

        … 

 

    def dumps(self) -> 'SDumps': 

        … 

 

    def search(self, predicates: list[Callable[[Any], bool]]) -> list['S']: 

        if predicates: 

            return [ 

                s 

                for s in self.sindex[None] if predicates[0](s.value) 

                for s in s.search(predicates[1:]) 

            ] 

        else: 

            return [self] 

``` 

 

To fully understand how the above constructions handle None and NULL, it is necessary to study the 

corresponding SQL queries. However, here it suffices to note that with these constructions, the method 

search in particular, it becomes unproblematic to implement a MQTT client for publishing and/or subscribing 

to such data. While for the cluster node, it suffices to characterize nodes according to their tree depth in the 

s-table, the search method enables addressing finer structures with ease. 

https://en.wikipedia.org/wiki/MQTT


 15 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

Note that, to serve the intended purpose, to update a time series with some other time series data, it is 

necessary to first delete the data in the time series from the earliest index: datetime | None in the time 

series data and then insert the time series data, and that this is already handled by the API method 

TIndex.__setitem__. And for this method as well as for the other API methods, None functions as wildcard.2 

This leaves the publish-subscribe messaging solution. With the above constructions, this becomes trivial, 

and it suffices to publish some patch: list['SDumps'] under some topic and use it to update other local 

databases. 

Table 4 Message Payload Data Class (Payload) 

```python 

@dataclass_json 

@dataclass 

class Payload: 

    patch: list['SDumps'] 

``` 

 

Consequently, it suffices to implement one MQTT client for publishing and subscribing to such topics, 

parametrized over the choice of broker, the choice of topics and the content of the patches. 

For COLLECTiEF, it suffices to communicate time series data since an offset relative to the current time 

and, in addition, either publish such data or subscribe to and validate such data. And to keep things simple, 

the ability to configure the MQTT client has been limited accordingly. 

Table 5 Default Client (DefaultClient) 

```python 

class DefaultClient(Client): 

 

    def __init__( 

            self, 

            connection: Connection, 

            topic: str, 

            patch: list[tuple[list[str | None], timedelta | None]], 

            callback: Callable[[None], None] 

    ) -> None: 

        self._connection = connection 

        self._topic = topic 

        self._patch = patch 

        self._callback = callback 

        super().__init__() 

        self.on_connect = self._on_connect 

        self.on_message = self._on_message 

 

 

2 This seemingly special treatment of index: datetime | None for time series data can be understood as 

part of a more general pattern, where the indices are subject to a partial order with a least element None. 



 16 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

     

    def _on_connect(self, client: Client, userdata: Any, flags: dict[str, int], rc: int) -> None: 

        … 

 

    def _on_message(self, client: Client, userdata: Any, message: MQTTMessage) -> None: 

        … 

 

    @overload 

    def publish(self, index: datetime) -> MQTTMessageInfo: 

        … 

``` 

 

The client is limited to one topic: str for which it either publish or subscribe to and validate time series data 

since an offset relative to the current time according to patch: list[tuple[list[str | None], timedelta | None]]. 

To facilitate testing, the client is also parametrized by callback that is triggered after the client has processed 

a message. This mechanism makes it possible to run the asynchronous system in a synchronous way and 

in simulated time, and thus test complex scenarios as fast as the computational resources permit. 

The framework is contained in the two modules minimas.measure (data) and minimas.control (publish-

subscribe), which improves on the functionality of the minimas framework of D2.1. 

  



 17 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

3. Architecture, System 

Python is widely used in research and development due to its extensive collection of third-party modules 

and robust ecosystem. It is also recognized for its package management and environment solutions, 

although they tend to receive mixed reviews.3 

In the past decade, containers have emerged as a practical solution to handle the complexities associated 

with software development. They provide developers with the ability to write software on one computer and 

confidently run it on another. However, using containers introduces additional complexity and a more 

intricate development environment. Nevertheless, the benefits of containers generally outweigh the 

drawbacks, resulting in overall lower effort. 

During the same period, microservice architectures experienced a rise and fall in popularity. This approach 

involves breaking down large computer systems into smaller, independent solutions that can be modified 

and redeployed separately. While microservice architectures have their advantages in certain scenarios, 

they are not considered a universal solution. The increased bureaucracy and complexity associated with 

managing internal communication often outweigh the benefits. 

However, there are specific cases where microservice architectures prove to be a sensible choice. For 

instance, they are suitable for developing decentralized or distributed software and enabling collaborative 

deployment of software by multiple organizations, such as in the case of COLLECTiEF. 

Docker and Docker Compose offer solutions for packaging software applications into containers and 

managing their dependencies, configurations, and deployment. Docker allows developers to create 

portable and isolated environments called containers, ensuring consistent behavior across different 

systems. Docker Compose simplifies the management of multiple containers, enabling developers to define 

and orchestrate their relationships. 

Docker and Docker Compose are often preferred for their development-friendly features, which is also why 

they are used here. Other alternatives, like Kubernetes, instead focus on container orchestration at scale. 

Kubernetes provides advanced features for automating deployment, scaling, and management of 

containers across clusters of machines. 

3.1. Example Configurations 

Building on the details of Section [Architecture, Software] and the above introduction to containers, it is 

possible to accurately depict an example configuration of the intended system to serve as a point of 

reference for further discussions, see Figure 1, where node1 corresponds to the Cluster Node and node2 

corresponds to the Edge Node. The figure is subject to the following graphical notation, 

• Arrow, dashed: Control flow, mixing event-driven subscribers and scheduled modelers and 

publishers. 

• Arrow, solid: Data flow. 

• Box: Container labeled by name for Docker Compose (PostgreSQL, MQTT, Python). 

 

 

3 https://xkcd.com/1987/ 

https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Kubernetes
https://xkcd.com/1987/


 18 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

• Circle: Module labeled by fully qualified name. 

• Diamond: Time-series labeled by fully qualified name. 

• Square: JSONB data labeled by fully qualified name. 

• Star: MQTT message labeled by topic. 

Take note of the usage of curly braces, which are used to denote placeholders for locally unique names. 

The graphics has been produces using yEd, which provides a solution for automatic layout, that is useful 

for sorting out this kind of diagrams. 

  

https://en.wikipedia.org/wiki/YEd


 19 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

Figure 1 Example Configuration, where node1 = Cluster Node and node2 = Edge Node 

                              

                           

                                   

                                              

                                   

                                           

                                           

                                           

                              

                                   

                                           

                                      

                           

                                   

                                      

                        

                          

                  

                                               

                        

             
             

                  

                                               

                        

                          

                                     

                        

                                     

                        

                                    

                       

                          

                          

                                    

                          

                       

                          

                                     

                        

                                    

                          

                       

                          

                                     

                        

                                    

                       

                          

                          



 20 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

 

The example configuration of Figure 1 is close to the intended production configuration with the following 

caveats, 

• To facilitate offline development, it has a mock node0 corresponding to the environment. 

• To facilitate offline development, it has a mock node3 corresponding to sensors and actuators. 

• To work around the combined lack of grid data and sporadic access to smart meter data, the node3 

sensors and actuators are instead expected to report some measure_energy_flow to use as a 

proxy. 

• To facilitate offline development, it includes an additional time series (blue diamond) to allow node3 

to return the control_energy_flow in place of the measure_energy_flow. 

• It does not aggregate energy data. This is instead addressed in Section 3.1.2 and Section 4.2. 

• It is necessary to use different node0 and node3 counterparts depending on whether the purpose 

is development, DIMOSIM or production. This is done by means of Docker Compose. 

• While node1 (the Cluster Node) encompasses details pertaining to the nDSM solution, the 

corresponding details are absent from node2 (the Edge Node) as they fall outside the concern of 

the Cluster Node. 

• The example has one broker per dialogue between a parent node and its children, but the solution 

permits different brokers to be merged with preserved semantics.  

As mentioned above, in this report, the Edge Node only covers the NODA solution. That said, the two 

solutions are easily coordinated by means of the mechanism of Section 1. 

3.1.1. Containers 

node0: Mock-up of the environment and responsible for weather forecasts. 

node0_control: Top-level MQTT broker. 

node1_control: Cluster Node MQTT broker, likely to be superseded by node0_control. 

node1_control_publisher: Modelers responsible for control, and MQTT publisher; scheduled. 

node1_control_subscriber: MQTT client; event driven. 

node1_measure: PostgreSQL database. 

node1_measure_publisher: Modelers, and MQTT client; scheduled. 

node1_measure_subscriber: MQTT client; event driven. 

node2_control: Edge Node MQTT broker, likely to remain internal to the Edge Node. 

node2_control_publisher: Modelers responsible for control, and MQTT client; scheduled. 

node2_control_subscriber: MQTT client; event driven. 

node2_measure: PostgreSQL or MySQL database depending on the development outlined in Section 4.2. 

node2_measure_publisher: Modelers, and MQTT client; scheduled. 

node2_measure_subscriber: MQTT client; event driven. 



 21 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

node3: Mock-up of the BRIG and responsible for returning patches under the node3/measure topic.  

Note that the container node2_control_subscriber contains the module node1.control.subscriber, 

that the container node1_measures_subscriber contains the module node2.measure.subscriber, etc. 

This adheres to the patten of locating the code for subscribing to a topic together with the code responsible 

for producing and publishing the corresponding messages in the first place. 

The contains are here used to organize the content in event driven and scheduled processes, but the 

content can be organized differently. For example, the MQTT library paho.mqtt permits the MQTT client 

to run in the background, so it is possible to run subscribers together with modelers and publishers. 

Conversely, it is also possible to run modelers on separate threads or move them to separate containers. 

The container names have been chosen to reflect the longest common namespace or somehow most 

indicative function of the corresponding content but are otherwise arbitrary. 

3.1.2. Data 

{name0}/control_temperature: Forecasted outdoor temperature [K]. 

{name0}/{name1}/control_energy_cost: The synthetic price signal from D2.1 [·]. 

{name0}/{name1}/control_energy_mode: The nDSM solution energy mode with weighted signals [·]. 

{name0}/{name1}/value["ndsm"]["model"]: Implementation specific serialization. 

{name0}/{name1}/value["noda"]["model"]: Implementation specific serialization. 

{name0}/{name1}/{name2}/control_energy_flow: Expected energy flow [W] for testing and evaluation. 

{name0}/{name1}/{name2}/control_temperature: Setpoint temperature [K]. 

{name0}/{name1}/{name2}/measure_energy_flow: Aggregated energy flow [W]. 

{name0}/{name1}/{name2}/value["noda"]["model"]: Implementation specific serialization. 

The absence of a {name0}/{name1}/{name2}/value["ndsm"]["model"] is due to the authors' lack of 

insight into the preferred organization of the nDSM solution on the Edge Node. That said, it is trivial to add 

new s-nodes for models and time series, and it can be done by without excessive coordination. 

The Cluster Node and NODA Edge Node solutions will also use the following data, which were omitted from 

the example configuration in Figure 1 for pedagogical reasons; see Section 4.2 for further details. 

{node0}/{node1}/control_energy_flow: Expected energy flow [W] for testing and evaluation. 

{node0}/{node1}/measure_energy_flow: Aggregated energy flow [W]. 

{node0}/{node1}/{node2}/{node3}/measure_energy_flow: Measured energy flow [W]. 

3.1.3. Topics 

node0/control: Weather forecast, see Section 4.1. 

node1/control: Weather forecast, energy cost and energy mode time series data. 

node1/measure: Currently unused.  

node2/control: Energy flow and setpoint temperature time series data. 

node2/measure: Energy flow time series data. 

node3/measure: Energy flow time series data. 



 22 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

As already mentioned in Section 2.1, the solution is highly flexible with respect to the choice of topics, and 

their function is more a matter of avoiding unnecessary work and less a matter of managing control flow. 

However, having the topics reflect who published something works well in both respects, hence the above 

topic structure. If useful, the topic structure can also be extended with a prefix. Also, the labels node0, 

node1, node2 and node3 do not matter as long as they are distinct. 

3.1.4. Modules 

node0.control.publihser: Factory for DefaultClient. 

node0.control.subscriber: Factory for DefaultClient; used by node1_control_subscriber. 

node1.control.ndsm_modeller: Functions for using …/{name1}/value["ndsm"]["model"]. 

node1.control.noda_modeller: Functions for using …/{name1}/value["noda"]["model"]. 

node1.control.publisher: Factory for DefaultClient. 

node1.control.subscriber: Factory for DefaultClient; used by node2_control_subscriber. 

node1.measure.ndsm_modeller: Functions for estimating  …/{name1}/value["ndsm"]["model"]. 

node1.measure.noda_modeller: Functions for estimating  …/{name1}/value["noda"]["model"]. 

node1.measure.publisher: Factory for DefaultClient. 

node1.measure.subscriber: Factory for DefaultClient; used by node0. 

node2.control.ndsm_modeller: Functions for using …/{name2}/value["ndsm"]["model"]. 

node2.control.noda_modeller: Functions for using …/{name2}/value["noda"]["model"]. 

node2.control.publisher: Factory for DefaultClient. 

node2.control.subscriber: Factory for DefaultClient; used by node3. 

node2.measure.ndsm_modeller: Functions for estimating  …/{name2}/value["ndsm"]["model"]. 

node2.measure.noda_modeller: Functions for estimating  …/{name2}/value["noda"]["model"]. 

node2.measure.publisher: Factory for DefaultClient. 

node2.measure.subscriber: Factory for DefaultClient; used by node1_measure_subscriber. 

node3.measure.publisher: Factory for DefaultClient. 

node3.measure.subscriber: Factory for DefaultClient; used by node2_measure_subscriber. 

Note the pattern of locating the code for subscribing to a topic together with the code responsible for 

producing and publishing the corresponding messages in the first place, even though it will be used by a 

different node. 

The modelers are responsible for the algorithmic work. Everything else is configurations, MQTT clients, and 

scheduling, with https://github.com/dbader/schedule a convenient solution for the latter. And while 

manageable, the large number of parts are inconvenient to work with, and the situation is made worse by 

the need to test different configurations against different endpoints. 

The modules contain code as well as container files. While not ideal, the approach simplifies development. 

3.2. Alternative Configurations 

https://github.com/dbader/schedule


 23 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

There are plenty of other configurations. Fortunately, several relevant configurations can be understood as 

the result of a few independent choices. 

• The example configuration subscribes to a broker for weather forecasts. However, the 

node0.control.subscriber can be replaced by a node.control.weatherforecaster, 

scheduled to retrieve weather forecasts through some REST API. The container node0 and its 

content as well as node1.meassure.publisher can then be discarded. For testing, it makes sense 

to secure a way to synchronize between node1.measure.nDSM_modeller and the weather 

forecaster, for example, by placing them in the same container and using the callback mechanism 

of DefaultClient. 

• For x in {node1, node2} and y in {control, measure}, put x.y.subscriber, x.y.noda_modeller, 

x.y.nDSM_modeller and x.y.publisher in the same container and synchronize the control flow 

between x.y.subscriber and x.y.noda_modeller using the callback mechanism. Combined 

with a mechanism for keeping track of the expected number of node3/measure and 

node2/measure messages, this makes it possible to run the entire system in a synchronous way. 

This configuration is useful for testing. 

• The COLLECTiEF approach promotes edge computing. However, until the necessary equipment 

becomes more affordable to deploy, cloud computing is likely to remain economically 

advantageous. For such a setup, discard 

o node1_control, node1_measure_subscriber, node1.control.publisher, 

o node2_measure, node2_control_subscriber, node2.measure.publisher, 

and containerize 

o node2.measure.noda_modeler, node2.measure.nDSM_modeler, 

o node1.measure.noda_modeler, node1.measure.nDSM_modeler, 

o node1.measure.publisher, 

o node1.control.noda_modeler, node1.control.nDSM_modeler, 

o node2.control.noda_modeler, node2.control.nDSM_modeler, 

o node2.control.publisher 

into one or two containers connected to the node1_measure database. 

• The example configuration includes {name0}/{name1}/{name2}/control_energy_flow to 

facilitate offline development. For online development, replace node3 with a container for 

integrating with DIMOSIM, some equivalent solution, or the sensors and actuators of some test 

facility. Note that it makes sense to retain something like control_energy_flow for evaluation. 

And to just exercise the algorithms, consider discarding the containers as well as everything related to 

communication, setup a virtual environment, and execute the algorithms against a local database populated 

with test data. While testing this kind of control solutions remains complex, this approach makes it easier 

to manage. 

While some alternatives like the suggested node0.control.weatherforecaster fits well into the current 

module structure, is nevertheless necessary to keep track of auxiliary code for combining it with the 

components of the container node1_control_publisher into a new container. This need is even more 



 24 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

pronounced for the other alternatives, and of particular importance when integrating with an external system 

conforming to someone     ’  design. 

To avoid a mess, consider introducing new top-level modules myalternative0, myalternative1, 

myalternative2 and myalternative3 for code and container files, and a corresponding top-level file 

myalternative.docker-compose.yml for composing the solution. The top-level modules can then import 

form node0, node1, node2 and node3 and other alternative modules while retaining the overall organization 

into subscribers, modelers, and publishers. For example, to integrate with DIMOSIM, create a module 

mydimosim3 for the code and a mydimosim.docker-compose.yml to compose the solution along the lines 

of some other configuration, replacing the counterpart of container node3 with a container mydimosim3.  



 25 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

4. Integration with other Components 

The Cluster Node is intended to be used together with some service providing weather forecasts and some 

sensors and actuators augmenting the Edge Node such as the BRIG. To integrate with these, or with 

DIMOISM, it is necessary to replace node0_control_subscriber, node2.control.publisher and 

node3_measure_subscriber with solutions providing the desired functionality. This section is mainly 

concerned with the details of such work. For the organization of such work, consider following the approach 

outlined at the end of Section 3.2, placing the new code and the new container files in new top-level modules 

such as myopenweathermap0 and mydimosim3. 

4.1. Weather Forecasts 

The COLLECTiEF consortium is leaning towards OpenWeatherMap for weather forecasts, see D2.1. Most 

API methods serve JSON, and the data is organized in a what that is easy to understand. For the 

COLLECTiEF solution, the most relevant variables seem to be 

• Cloudiness 

• Humidity 

• Temperature (actual, felt, min, max) 

• Wind (speed, direction) 

Among these, the Cluster Node solution and the NODA Edge Node solution are currently only using the 

actual temperature in the form of node0/control_temperature, but future development of the Cluster 

Node may benefit from also utilizing cloudiness, wind speed and humidity in that order. The impact of wind 

direction in an urban setting seems too complicated to be worth the effort. Future development of the Edge 

Node may instead emphasize humidity and its impact on the perceived indoor climate. 

OpenWeatherMap weather forecasts are being published to the project main MQTT broker. It remains to 

implement a module openweather0 with a subscriber for updating the database with the corresponding 

time series data. 

4.2. BRIG 

The BRIG does, among other things, collect energy data from sources the corresponding building and 

periodically packages the data into a JSON array, which it publishes to the project main MQTT broker under 

a topic containing the BRIG UUID, see D2.1. 

This energy data falls outside Section 3.1.2. It remains to implement a module brig3 for updating the 

database with the corresponding {name0}/{name1}/{name2}/{name3}/measure_energy_flow time 

series data, and to refine module node2 with support for aggregating energy data. In fact, module node1 

should also be refined with support for aggregating energy data from …/{name2}/measure_energy_flow 

into …/{name1}/measure_energy_flow time. 

Note that these constructions are essential but were omitted from the example configuration in Figure 1 for 

pedagogical purposes because they cluttered the graphics and made the big picture difficult to convey. 

To aggregate energy data, it is necessary to first interpolate any gaps in the data. This can be challenging, 

and for the current setup, this challenge occurs for the Cluster Node and Edge Node alike. This is also the 

reason NODA recommends the use of grid energy data and smart meter energy data rather than in-house 

solutions. How well the latter will work in practice remains to be seen. 

https://openweathermap.org/


 26 
This project has received funding from the European Union's H2020 research and innovation programme 

under Grant Agreement No 101033683 

research and innovation programme under Grant Agreement No 101033683 

The BRIG uses MySQL rather than PostgreSQL and a different table structure than the one in Table 1, 

which constitute an obstacle to the NODA Edge Node solution. The current version of minimas.measure 

factors over a typing.Protocol in a way that abstracts over whether it is connected to a MySQL or a 

PostgreSQL database, but it remains to take the different table structures into account. However, it is 

feasible to keep the changes local and keep the minimas.measure interface for the rest of the codebase. 

4.3. DIMOSIM 

While desirable, there is currently no support for translating between the data model of minimas.measure 

and the data model of DIMOSIM. Consequently, to integrate with DIMOSIM, it is necessary to provide a 

scenario-specific mapping between DIMOSIM parameters and variables, and minimas.measure control 

and measure time series. 

To integrate with DIMOSIM, consider packaging the general parts of the work in a module dimosim3 and 

packaging the scenario-specific parts of the work in a module myscenario3 and a corresponding file 

myscenario.docker-compose.yml to compose the solution. 

 


